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ABSTRACT

In this thesis, we join the study of asymptotic computability, a project attempting to capture

the idea that an algorithm might work correctly in all but a vanishing fraction of cases.

In collaboration with Hirschfeldt and Jockusch, broadening the original investigation of

Jockusch and Schupp [12], we introduce dense computation, the weakest notion of asymptotic

computability (requiring only that the correct answer is produced on a set of density 1), and

effective dense computation, where every computation halts with either the correct answer

or (on a set of density 0) a symbol denoting uncertainty. A few results make more precise

the relationship between these notions and work already done with Jockusch and Schupp’s

original definitions of coarse and generic computability.

For all four types of asymptotic computation, including generic computation, we demon-

strate that non-trivial upper cones have measure 0, building on recent work of Hirschfeldt,

Jockusch, Kuyper, and Schupp [9] in which they establish this for coarse computation. Their

result transfers to yield a minimal pair for relative coarse computation; we generalize their

method and extract a similar result for relative dense computation (and thus for its corre-

sponding reducibility).

However, all of these notions of near-computation treat a set as negligible iff it has

asymptotic density 0. Noting that this definition is not computably invariant, this produces

some failures of intuition and a break with standard expectations in computability theory.

For instance, as shown by Hamkins and Miasnikov [8], the halting problem is (in some

formulations) effectively densely computable, even in polynomial time — yet this result

appears fragile, as indicated by Rybalov [24].

In independent work, we respond to this by strengthening the approach of Jockusch

and Schupp to avoid such phenomena; specifically, we introduce a new notion of intrinsic

asymptotic density, invariant under computable permutation, with rich relations to both ran-

domness and classical computability theory. For instance, we prove that the stochasticities

corresponding to permutation randomness and injection randomness coincide, and identify
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said stochasticity as intrinsic density 1
2 .

We then define sets of intrinsic density 0 to be effectively negligible, and classify this as

a new immunity property, determining its position in the standard hierarchy from immune

to cohesive for both general and ∆0
2 sets. We further characterize the Turing degrees of

effectively negligible sets as those which are either high (a′ ≥T ∅′′) or compute a DNC

(diagonally non-computable) function. In fact, this result holds over RCA0, demonstrating

the reverse-mathematical equivalence of the principles ID0 and DOM ∨DNR.

Replacing Jockusch and Schupp’s negligibility (density 0) by effective negligibility (in-

trinsic density 0), we then obtain new notions of intrinsically dense computation. Finally,

we generalize Rice’s Theorem to all forms of intrinsic dense computation, showing that no

set that is 1-equivalent to a non-trivial index set is intrinsically densely computable; in par-

ticular, in contrast to ordinary dense computation, we see that the halting problem cannot

be intrinsically densely computable.
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CHAPTER 1

INTRODUCTION

1.1 Context

For years, there has been strong interest in the distinction between the idealized world of

computation and complexity and that of its real-world applications, particularly in prob-

lems or algorithms where we find a separation between the worst-case complexity (or, more

broadly, difficulty) and the worst cases actually encountered in practice. The simplex algo-

rithm for linear programming is the classic example; there is a family of examples on which

the algorithm takes exponential time [16], yet in practice, every problem actually encoun-

tered is solved within polynomial time bounds. Even more extreme examples are known,

including several problems in group theory (including some variants of the word problem)

that are non-computable in general, but for which a low-complexity algorithm solves all

examples encountered in practice. [14] In complexity theory, current methods for exploring

such structure include the average-case complexity introduced by Gurevich [7] and Levin

[17], though this is sensitive to one’s choice of probability measure, as well as the smoothed

analysis of Spielman and Teng [26]; however, none of these methods have been adapted to

computability theory, and it may well be that none are well-suited to such problems.

Taking a more direct approach, several researchers have begun work on the question of

whether an algorithm’s problematic behavior might be restricted to a negligible set. This is

clearly related to the analysts’ notion of “almost everywhere”, whereby one works modulo

sets of measure 0 so as to disregard problematic variations with no practical effect. In a

sense, this study is motivated by envy of their methods — in recent years, we have discovered

problems that seem to be “computable almost everywhere”, and are working to find the right

definition for the phrase.

1



1.2 Standard notation and definitions

In this section, we collect notation and definitions that will be used for the rest of this paper.

We will denote the e-th partial computable function (in some fixed universal enumeration)

by ϕe.

We routinely identify a set S ⊆ ω with its characteristic function, S(n), and also with the

infinite binary sequence defining its characteristic function, (S(n))n∈ω. By S �n, we mean

either S ∩ [0, n) or the string consisting of the initial n bits of the infinite sequence; which

notation we are using at a given moment will be made clear by context. Two sets S and T

have finite difference, denoted S =∗ T , if S(n) = T (n) for all sufficiently large n.

Given two finite strings v and w, we say v is a prefix of w, denoted v � w, if there is a

string x such that the concatenation of v followed by x is w (i.e., vx = w); this definition

extends to infinite sequences w in the natural way. For any string s, we denote the unique

prefix of s of length n by s�n.

The prefix-free Kolmogorov complexity of a binary string s is denoted as K(s); we refer

to Downey and Hirschfeldt [3] or Nies [21] for the details of its definition and properties,

but note that it does relativize: we can consider the prefix-free Kolmogorov complexity

of s with respect to A, denoted KA(s). Both of these books also provide many equivalent

characterizations of a 1-random set; for this paper, we will take the characterization in terms

of the Kolmogorov complexity of initial segments as our definition. A set S ⊆ ω is 1-random

if there is some constant c such that K(S �n) ≥ n − c for all n. This definition inherits

a natural relativization from prefix-free complexity: S is 1-random relative to A if there is

some c such that KA(S �n) ≥ n − c for all n. In general, S is said to be n-random if S is

1-random relative to ∅(n−1).

There is an equivalent characterization of randomness in terms of tests of limited de-

scriptive complexity; we will not discuss it in detail. However, there is a natural weakening

of n-randomness that comes from this characterization: a set S ⊆ ω is said to be weakly

n-random if it belongs to no Π0
n class of measure 0.
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A set S ⊆ ω is 1-generic if, for every c.e. set X of finite binary strings, there is some

initial segment σ ≺ S such that either σ ∈ X or σ 6� τ for every τ ∈ X.

We say that a function f is dominant if for all e such that ϕe is total, f(n) ≥ ϕe(n) for

all sufficiently large n.

If a function f has f(e) 6= ϕe(e) whenever ϕe(e) ↓, it satisfies the classic diagonal

argument that proves it not on the list of computable functions; we say that f is diagonally

non-computable, or DNC. A set A is said to have DNC degree if there is an A-computable

DNC function.

1.3 Background

The essential difficulty in defining “computable almost everywhere” is that there is no uni-

form probability measure on the integers, and thus no natural notion of a null set. Instead, if

we want a uniform measurement of the size of a subset of ω, we are forced to abandon count-

able additivity and fall back to pseudo-measures. One of the most practical is asymptotic

density.

Definition 1.3.1. Let S ⊆ ω, where ω = {0, 1, 2, . . .} is the set of natural numbers. For

every n ≥ 0, we denote S ∩ [0, n) by S�n.

We define the n-th partial density of S as

ρn(S) :=
|S�n|
n

.

The lower density ρ(S) of S is

ρ(S) := lim inf
n→∞

ρn(S) = lim inf
n→∞

|S�n|
n

,
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and the upper density ρ(S) of S is

ρ(S) := lim sup
n→∞

ρn(S) = lim sup
n→∞

|S�n|
n

.

If the limit of the partial densities exists (i.e., ρ(S) = ρ(S)), then we say that S has

(asymptotic) density

ρ(S) := lim
n→∞

ρn(S) = lim
n→∞

|S�n|
n

.

Of course, 0 ≤ ρ(S) ≤ ρ(S) ≤ 1 for all S ⊆ ω. In an unfortunate collision of terms,

at least for computability-theoretic work, a set is said to be generic if it has density 1

(equivalently, ρ(S) = 1). The name is motivated by the fact that given a generic set S,

the probability that a random integer selected from [0, n) will lie in S approaches 1 as n

increases; thus, in some sense, such a set contains all generic integers. The complement of

this notion is more useful for our purposes:

Definition 1.3.2. A set S ⊂ ω is said to be negligible if it has density 0 (equivalently, if

ρ(S) = 0).

Once we fix a notion of negligibility in ω, the problem of defining computability modulo

a negligible set is reduced to determining the acceptable forms of error. In 2003, Kapovich,

Myasnikov, Schupp, and Shpilrain [14] introduced generic-case complexity, considering algo-

rithms that committed no error, but could fail to converge or otherwise violate a complexity

bound on a set of density 0. They showed that this captured the phenomenon observed in

several group-theoretic problems with non-computable instances that in practice have been

simple to solve; for instance, they demonstrated that for any G in an extremely large class

of groups, the word problem for G has linear-time generic-case complexity. Myasnikov, in

collaboration with Hamkins, went on to apply these ideas to Turing’s halting problem [8],

and proved that (for reasons having to do with the prevalence of trivially halting or trivially

non-halting programs in many models of computation) the halting problem is “generic-case

decidable” in said models. This was later refined by Rybalov [24], who proved that the
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halting problem is not “strongly generic-case decidable” (that is, decidable modulo sets with

partial density converging to 0 exponentially fast); this proof, by contrast, is valid for all

Turing-machine models of computation.

Jockusch and Schupp [12] have since defined and begun the study of the computability

theory corresponding to generic-case complexity, and more generally the relations between

asymptotic density and computability. Their work has been further developed in collabo-

ration with Downey [5] and McNicholl [6], and refined in specific cases by Igusa [10] and

Bienvenu, Day, and Hölzl [1].

Following Kapovich, Myasnikov, Schupp, and Shpilrain [14] in permitting no false con-

vergence, Jockusch and Schupp [12] defined one form of asymptotic computability as follows:

Definition 1.3.3. A partial function f : ω → ω is a partial description of a function

g : ω → ω if f(n) = g(n) whenever f(n) converges. If f has density-1 domain, we call f a

generic-case description of g.

We say that g : ω → ω is computable in the generic case, or generic-case computable, if

g has a computable generic-case description.

When specialized to sets, Jockusch and Schupp [12] noted an equivalent formulation that

provided some insight and has proved extremely useful.

Proposition 1.3.4. A set A ⊆ ω is generic-case computable iff it is densely approximable

by c.e. sets; that is, iff there exist c.e. sets A0 and A1 such that A1 ⊆ A, A0 ⊆ A, and

A0 t A1 has density 1.

By analogy, they also suggested (and analyzed) another variant; in coarse computation,

we permit only errors of commission, requiring that descriptions be total while allowing

convergence to an incorrect answer on a negligible set. [12]

Definition 1.3.5. A total function f : ω → ω is a coarse description of a function g : ω → ω

if f(n) = g(n) on a set of density 1.

We say that g : ω → ω is coarsely computable if it has a computable coarse description.
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Again, specialized to sets, this yields a useful and equivalent formulation:

Proposition 1.3.6. A set A ⊆ ω is coarsely computable iff there is a computable set C such

that A4C has density 0. [12]

Downey, Jockusch, and Schupp [5] then generalized each of these definitions, noting that

we can of course relax the condition that convergence (or correctness) is achieved on a set

of density 1 to a set of density r.

Definition 1.3.7. We say that a function g is (asymptotically) computable at density r if it

has a computable partial description with domain having lower density at least r. We then

define the (asymptotic) computation bound for g to be

α(g) = sup{r : g is computable at density r}.

Similarly, if there is a total computable function f such that f(n) = g(n) on a set of lower

density at least r, we say that g is coarsely computable at density r. We thus obtain the coarse

computation bound for g, defined as γ(g) = sup{r : g is coarsely computable at density r}.

1.4 Structure and summary

In the first chapter of this thesis, Chapter 2, we begin by generalizing the definitions of

Jockusch and Schupp [12] and Downey, Jockusch, and Schupp [5] to allow us to discuss

asymptotic computability more broadly. In every variant of asymptotic computability, we

find that any function that is asymptotically computable below a positive-measure subset of

2ω is in fact asymptotically computable and show as a consequence that minimal pairs exist

for relative dense computation, in parallel to an argument of Hirschfeldt, Jockusch, Kuyper,

and Schupp [9] establishing this for relative coarse computation.

Next, we revert to a direct discussion of what it should mean for a set to be effectively

negligible. In Chapter 3, we discuss the difficulties that result from using asymptotic density
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alone to define negligibility, and propose a more computability-theoretic definition of intrin-

sic density by insisting on invariance under computable permutations. Studying the resulting

notion of effective negligibility, we find that it is a new notion of immunity in the sense of

Post’s program, and characterize its precise relation to this classical hierarchy. We also study

the Turing degrees of effectively negligible sets, discovering that all such sets have particular

types of inherent computational power. As a result, we make a reverse-mathematical discov-

ery, relating the existence of effectively negligible sets to the disjunction of two more-standard

principles. Lastly, we note that taking an intermediate value of intrinsic density reproduces

a form of stochasticity implicit in Miller and Nies [19]; this highlights connections between

stochasticity and immunity, providing another connection between algorithmic randomness

and classical computability theory.

Finally, in Chapter 4, we apply our effective negligibility to produce new definitions

of intrinsic asymptotic computation, allowing us to discuss whether functions (or sets) are

inherently computable “almost everywhere.” We show that such notions are non-trivial

weakenings of standard Turing computability; in particular, to demonstrate that there are

sets that are not intrinsically computable, we generalize Rice’s Theorem to show that non-

trivial index sets cannot be intrinsically computable. As a corollary, we see that (by contrast

to ordinary asymptotic computation), the halting problem is not intrinsically computable.
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CHAPTER 2

DENSE COMPUTATION

This chapter is developed on the basis of joint work with Denis Hirschfeldt and Carl Jockusch.

2.1 Introduction

Though Jockusch and Schupp [12] defined forms of asymptotic computation permitting er-

rors of omission (generic-case computation) and errors of commission (coarse computation),

obvious variants remain to be analyzed. In particular, we may define forms of asymptotic

computation in which both forms of error may be present, or require that our computations

emit a signal whenever error may be possible.

The former of these is the weakest form of asymptotic computation. We place no require-

ments on how the description may fail to agree with the function described, and require only

that these failures are restricted to a negligible set of inputs:

Definition 2.1.1. A partial function f : ω → ω is a dense description of a function g : ω → ω

if f(n) ↓= g(n) on a set of density 1.

We say that g : ω → ω is densely computable if it has a computable dense description.

Of course, any function that is either coarsely or generic-case computable must be densely

computable, as all generic-case or coarse descriptions are dense descriptions.

At the other extreme, we require descriptions that must either answer correctly or halt

with a signal that they are not able to give the required answer:

Definition 2.1.2. A total function f : ω → ({−1} t ω) is an effective description of a

function g : ω → ω if for all n, f(n) = g(n) or f(n) = −1. For such an f , its effective

domain is defined to be f−1(ω). If f has effective domain of density 1, we say that f is an

effective dense description.

We say that g : ω → ω is effectively densely computable if g has a computable effective

dense description.
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In each case, we can generalize to sets of lower density and, as for coarse and generic-case

computation, define corresponding computability bounds.

Definition 2.1.3. We say that a function g is effectively computable at density r if g has an

effective description with effective domain of lower density at least r, and define the effective

computation bound of g to be β(g) = sup{r : g is effectively computable at density r}.

Similarly, if there is a p.c. function f such that f(n) ↓= g(n) on a set of lower density

at least r, we say that g is partially computable at density r. We thus obtain the partial

computation bound for g, defined as δ(g) = sup{r : g is partially computable at density r}.

In Section 2.2, we begin our discussion by establishing the relations between all four

notions of asymptotic computability, including their corresponding computation bounds.

These prove to be relatively straightforward; our results are summarized in Figure 2.1.

In Section 2.3, we then move to a question of “degree structure”, or classical computabil-

ity; specifically, we ask whether each notion of relative asymptotic computability might admit

minimal pairs, as exist in the Turing degrees. We make partial progress in all cases, and

demonstrate that in fact there are minimal pairs for relative dense computability.

2.2 Relations

When considering these new notions, our first order of business is to establish the relations

between all four notions of asymptotic computability, including their corresponding com-

putation bounds. Jockusch and Schupp [12] have already established that there are sets

which are coarsely computable but not generic-case computable, and vice-versa, and so that

generic-case and coarse computability are incomparable. We begin by establishing some

relations between effective dense computation and the other three notions.

Proposition 2.2.1. The following are equivalent:

1. g : ω → ω is effectively densely computable.
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2. g has a computable generic-case description f with computable domain.

3. g has a computable coarse description f such that f(n) = g(n) on a computable set of

density 1.

4. g has a computable dense description f such that f(n) ↓= g(n) on a computable set of

density 1.

Proof. (1) =⇒ (2) ∧ (3): Let f be a computable effective dense description of g. Since f is

computable, I = f−1(−1) is computable. We thus define the partial computable function

f̂ : ω → ω by

f̂(n) =


f(n) n 6∈ I,

↑ n ∈ I,

and the total computable function f0 : ω → ω by

f0(n) =


f(n) n 6∈ I,

0 n ∈ I.

Since I has density 0, f̂ has density-1 domain and agrees with f (which agrees with g) on

its entire domain. Therefore, f̂ is a computable generic-case description of g with density-1

domain.

Similarly, f0 agrees with f (which agrees with g) on C = ω \ I, so f0 is a computable

coarse description of g that agrees with g on a computable set of density 1.

(2) ∨ (3) =⇒ (4): Trivial.

(4) =⇒ (1): Let f be a computable dense description of g such that, for some computable

set C of density 1, f(n) ↓= g(n) for all n ∈ C. We define f̂ : ω → ({−1} t ω) by

f̂(n) =


f(n) n ∈ C,

−1 n 6∈ C.

10
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Figure 2.1: The graph of implications between the notions of asymptotic computability,
including computation bounds. All implications shown are strict, and all not shown are
false. We have abbreviated coarse computability by “cc”, generic-case computability by
“gc”, and (effective) dense computability by “(e)dc”.

Since f(n) ↓= g(n) for all n ∈ C, f̂ is total and, for all n, f̂(n) = g(n) or f̂(n) = −1.

Therefore, f̂ is a computable effective dense description of g.

In particular, we therefore see that any set that is effectively densely computable is also

both coarsely computable and generic-case computable. However, the converse is easily seen

to be false; any density-1 c.e. set with no density-1 computable subset (as constructed by

Jockusch and Schupp [12]) is both coarsely and generic-case computable, but can have no

generic-case description with computable domain. Therefore, effective dense computability

is strictly stronger than the conjunction of coarse and generic-case computability.

Theorem 2.2.2. For all g : ω → ω, α(g) = β(g) and γ(g) = δ(g); that is, the computation

and effective computation bounds always coincide, as do the coarse computation and partial

computation bounds.

Proof. Suppose g is partially computable at density d; that is, there is a partial computable

function f such that ρ({n : f(n) ↓= g(n)}) ≥ d. We denote {n : f(n) ↓= g(n)} by S, and

fix some ε > 0.

Let D be the domain of f ; by Theorem 3.9 of Downey, Jockusch, and Schupp [5], since
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D is c.e., it has a computable subset B with ρ(B) > ρ(D)− ε. We define f̂ by

f̂(n) =


f(n) n ∈ B,

0 n 6∈ B.

This is clearly a total computable function. Since S ⊆ D has lower density at least d, it

must be that S ∩ B has lower density at least d − ε; however, S ∩ B is precisely the set of

positions at which f̂(n) = g(n). This shows that A is coarsely computable at density d− ε

for all ε > 0.

Therefore, we see that γ(g) ≥ δ(g). Since any coarse computation at density d is also a

partial computation at density d, we in fact have that γ(g) = δ(g).

A similar argument shows that α(g) = β(g).

Corollary 2.2.3. Every densely computable set has γ = 1.

To complete our diagram of implications (Figure 2.1), it only remains to separate α = 1

from coarse and dense computability. First, we note that a modification of the simple set

construction (discussed in Jockusch and Schupp [12]) yields a simple set with density 0. Any

such set is coarsely computable, but has α = 0; therefore, there are coarsely computable sets

without α = 1.

Resolving the other non-implication is also straightforward, but takes slightly more work.

Proposition 2.2.4. There is a set with α = 1 that is not densely computable.

Proof Sketch. R(A) =
⋃
n∈A {2nk : k is odd} is such a set for any non-∆0

2 set A. Knowledge

of A�n suffices to effectively densely compute R(A) at density 1 − 2−n, so α(R(A)) = 1.

However, this set cannot be densely computable.

Suppose R(A) were densely computable, and let ϕ be a computable dense description of

R(A) such that, for each s, there is at most one ns such that ϕ(n)[s] ↓ and ϕ(n)[s − 1] ↑.

Let f̂(n, s) be the plurality-vote value of {ϕ(2nk)[s] : [k < s] ∧ [ϕ(2nk)[s] converges]}, and

define f(n) = lims→∞ f̂(n, s).
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If f̂(n, s) were to disagree with A(n) for infinitely many s, ϕ could not be a dense

description of A. Therefore, there must be some t such that f̂(n, s) = A(n) for all s > t, so

f(n) = A(n) for all n. However, f is computable in f̂ ′ = ϕ′ = ∅′.

Therefore, if R(A) is densely computable, A must be ∆0
2.

There are certain questions suggested by Figure 2.1 that remain open. As noted above,

effective dense computability is strictly stronger than the conjunction of coarse and generic-

case computability. However, three similar questions remain, which we suggest as directions

for future research in the field; the required constructions to answer these questions seem

likely to provide some useful insight into these notions of asymptotic computation.

Open Question 2.2.1. Is there a densely computable set A with α(A) = 1 that is not

generic-case computable? That is, is generic-case computability strictly stronger than the

conjunction of dense computability with computability bound α = 1?

Open Question 2.2.2. Is there a densely computable set that is neither coarsely nor generic-

case computable? That is, is dense computability simply the disjunction of coarse and

generic-case computability?

Open Question 2.2.3. Is there a set A with γ(A) = 1 that has is not densely computable

α(A) < 1 and is not densely computable? That is, is γ(A) = 1 iff A is densely computable

or α(A) = 1?

2.3 Upper cones and minimal pairs

Now that we have resolved the relations between the various notions of asymptotic compu-

tation, we shift to a question of their corresponding degree structure. Specifically, we ask

whether minimal pairs exist for each notion of relative asymptotic computation, wherein we

say that A is (effectively) densely, coarsely, or generic-case computable relative to B if there

exists a B-computable appropriate asymptotic description. This inquiry was launched by
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Downey, Jockusch, and Schupp [5] for generic-case computation, and partially resolved in

that case by Igusa [10], who showed that no minimal pair existed for relative generic-case

computation.

However, this was only a partial resolution; no relative asymptotic computability is tran-

sitive, so they do not immediately give a degree structure. After all, even if A computes

ϕ0, an effective dense description of B, and B computes ϕ1, an effective dense description

of C, there need not be a way to compute ϕ1 from ϕ0! Instead, our notions of reducibility

must be reductions to asymptotic descriptions; such reducibilities are defined in Jockusch

and Schupp [12] via enumeration operators, though we can also work more directly with the

concept of reduction to asymptotic descriptions. For each notion of asymptotic computation,

the corresponding asymptotic reduction is stronger than relative asymptotic computability.

Thus, for a full proof that an asymptotic computability has no minimal pairs, one must show

that the corresponding reducibility has no minimal pairs.

By contrast, for a positive proof of the existence of minimal pairs, it suffices to construct a

minimal pair for the relative asymptotic computability. As our results herein are all positive,

we will not discuss any asymptotic reducibilities in detail.

Hirschfeldt, Jockusch, Kuyper, and Schupp [9] proved the first positive result in this

project, showing that all non-trivial upper cones for relative coarse computation have mea-

sure 0, and transferred this result to demonstrate the existence of many minimal pairs

for coarse computation (and hence for coarse reducibility). In this section, we generalize

their argument, demonstrating that in fact non-trivial upper cones for all notions of relative

asymptotic computability have measure 0, and in the case of dense computation, also extend

their transfer argument to construct minimal pairs for dense reducibility with slightly higher

complexity.

We begin with a technical lemma, in essence a version of Fubini’s theorem allowing us to

relate asymptotic density and Lebesgue measure on Cantor space.
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Lemma 2.3.1. If (1− q)a+ b > 1, there is no sequence {Sn ⊆ 2ω}n∈ω such that

ρ({n : µ(Sn) < q}) > a

and, taking S(A) = {n : A ∈ Sn},

µ({A ∈ 2ω : ρ(S(A)) = 1}) > b.

Proof. Suppose such a sequence exists. Fixing some r < 1, consider the classes

Xn =
{
A ∈ 2ω : (∀p > n)ρp(S(A)) > r

}
.

Since the union of these classes includes {A ∈ 2ω : ρ(S(A)) = 1}, it must have measure > b;

since the classes are nested, there must be some finite N such that µ(Xn) > b for all n > N .

As the Sj with measure < q have upper density greater than a, there must be some

n > N such that µ(Sj) < q for at least an values of j ∈ [1, n].

As integration commutes with finite sums,

1

n

n∑
j=1

∫
2ω
1Sj dµ =

∫
2ω

1

n

n∑
j=1

1Sj dµ.

However,

1

n

n∑
j=1

∫
2ω
1Sj dµ =

1

n

n−1∑
j=0

µ(Sj) < 1− (1− q)a

but

∫
A∈2ω

1

n

n∑
j=1

1Sj dµ =

∫
A∈2ω

ρn(S(A)) dµ >

∫
Xn

ρn(S(A)) dµ > µ(Xn)r > br.
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Therefore, we must have 1− (1− q)a > br; rearranging, we see that

(1− q)a+ br < 1

for all r < 1. Therefore, we conclude that (1− q)a+ b ≤ 1.

Putting this into a more useful form for our purposes, we arrive at the following theorem:

Theorem 2.3.2. For any sequence {Sn ⊆ 2ω}n∈ω, if

µ({A ∈ 2ω : ρ(S(A)) = 1}) > q, (*)

we must have ρ({n : µ(Sn) ≥ q}) = 1.

Proof. Suppose we have such a sequence. Since µ({A ∈ 2ω : ρ(S(A)) = 1}) > q, there is

some ε > 0 such that

µ({A ∈ 2ω : ρ(S(A)) = 1}) > q + ε.

Let p = ρ({n : µ(Sn) < q}) and assume, towards a contradiction, that p > 0. We then

define I =
{
nj
}

to be the sequence of n such that µ(Sn) < q or n ≡ 0 (mod d 1
pεe). This

sequence has lower density at least pε, and upper density at most p(1 + ε). We then pass to

the subsequence
{
Snj
}

. Since I has positive lower density, every density-1 set must intersect

I with density 1 within I; therefore, property (*) is preserved. Since the upper density of{
nj
}

is at most p(1 + ε), but
{
nj
}

contains all n such that µ(Sn) < q (which have upper

density p), we must have that

ρ({j : µ(Snj ) < q}) ≥ 1

1 + ε
> 1− ε.

Thus, we have constructed a sequence having ρ({n : µ(Sn) < q}) > 1 − ε and satisfying

property (*).

However, this sequence meets the conditions for Lemma 2.3.1, taking a = 1 − ε and
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b = q + ε. Since (1 − q)a + b = (1 − q)(1 − ε) + q + ε = 1 + qε > 1, this would actually

contradict the lemma, so we must have p = 0. Therefore, ρ({n : µ(Sn) ≥ q}) = 1.

This theorem forms the foundation of our arguments in the remainder of this Section,

allowing us to use majority-vote arguments to construct computable asymptotic descrip-

tions for any set with a positive-measure upper cone. We first apply this to generic-case

computation, obtaining a result that provides a useful contrast with that of Igusa [10].

Theorem 2.3.3. If A is not generic-case computable, then

µ({X ∈ 2ω : A is generic-case computable relative to X} = 0,

and in particular, no element of this set can be weakly 4-random relative to A.

Proof. By countable additivity, it suffices to prove that µ(AΦ) = 0, where

AΦ = {X ∈ 2ω : ΦX is a generic-case description of A}.

for a fixed computable 0-1-valued functional Φ.

Towards a contradiction, suppose otherwise. By Lebesgue density, we can assume that

µ(AΦ) > 3
4 . Define Sn =

{
X ∈ 2ω : ΦX(n) ↓= A(n)

}
. By the theorem, since µ({X ∈ 2ω :

ρ(S(X)) = 1}) ≥ µ(AΦ) > 3
4 , we must have µ(Sn) ≥ 3

4 for all but a density-0 set of n’s. We

can use this to compute a generic-case description of A, using a majority-rule scheme.

Specifically, to calculate A(n), we wait to see ΦX(n) converge on a class with measure

at least 2
3 , and let f(n) be the majority-rule value (for concreteness, breaking ties in favor

of 0). f is, by the use principle, a partial computable function.

Note that f(n) cannot converge to a different value than A(n); otherwise, we have a class

In of measure at least 2
3 ·

1
2 = 1

3 for which ΦX(n) ↓ and ΦX(n) 6= A(n). Since no X ∈ In is

a generic-case description of A, it must be that In and AΦ are disjoint; however, µ(AΦ) > 3
4

and µ(In) ≥ 1
3 , so this is impossible.
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Therefore, the constructed function is a computable partial description of A, with f(n) =

A(n) whenever f(n) ↓. It only remains to show that f converges on a set of density 1. How-

ever, by construction, f(n) must converge whenever µ(Sn) ≥ 2
3 . Since ρ({n : µ(Sn) ≥ 3

4}) =

1, f must converge on a set of density 1. Therefore, A is generic-case computable, in con-

tradiction to our assumptions.

Writing out the definition of AΦ carefully, we see that AΦ is a ΠA4 -class; since µ(AΦ) = 0,

AΦ contains no set that is weakly 4-random relative to A.

Obviously, as Igusa’s result shows that no minimal pairs exist for relative generic-case

computation, any attempt to use the method of Hirschfeldt, Jockusch, Kuyper, and Schupp

[9] to extract minimal pairs from this theorem must fail. This will be discussed at greater

length in a published paper to follow.

A similar proof gives us the same result for dense computability, though it does require

slightly more attention to control the possibility of error in the computations monitored by

f .

Theorem 2.3.4. If A is not densely computable, then

µ({X ∈ 2ω : A is densely computable relative to X} = 0,

and in particular, no element of this set can be weakly 4-random relative to A.

Proof. By countable additivity, it suffices to prove that µ(AΦ) = 0, where

AΦ = {X ∈ 2ω : ΦX is a dense description of A}.

for a fixed computable 0-1-valued functional Φ.

Towards a contradiction, suppose otherwise. By Lebesgue density, we can assume that

µ(AΦ) > 3
4 . Define Sn =

{
X ∈ 2ω : ΦX(n) ↓= A(n)

}
. By the theorem, we must have

18



µ(Sn) ≥ 3
4 for all but a density-0 set of n’s. We can use this to compute a dense description

of A, using a majority-rule scheme.

Specifically, to calculate A(n), we wait to see ΦX(n) converge on a class with measure

at least 2
3 . If this happens, we declare f(n) to be the majority value (again, breaking ties

in favor of 0). f is, by the use principle, a partial computable function. It only remains to

show that f converges correctly to A on a set of density 1.

By the definition of Sn, we know that ΦX(n) converges for every X ∈ Sn. Since if f(n)

diverges, ΦX(n) fails to converge on a class of measure at least 2
3 , we must have µ(Sn) < 2

3

in this case. If instead f(n) converges incorrectly, we have a set of measure at least 2
3 ·

1
2 = 1

3

on which ΦX(n) ↓= 1− A(n); therefore, µ(Sn) ≤ 2
3 .

Since µ(Sn) ≥ 3
4 for all but a density-0 set of n’s, each case can only occur on a set of

density 0. We conclude that f(n) must converge to A(n) on a set of density 1. Therefore,

f is a dense description of A, and so A is densely computable, in contradiction to our

assumptions.

Again, writing out the definition of AΦ carefully, we see that AΦ is a ΠA4 -class; since

µ(AΦ) = 0, AΦ contains no set that is weakly 4-random relative to A.

In this case, a slight variant on the method of Hirschfeldt, Jockusch, Kuyper, and Schupp

[9] will allow us to use randomness to generate minimal pairs for dense reducibility. Their

transfer argument is based on the observation that any two coarse descriptions of the same

set are necessarily coarse descriptions of each other. The analogous statement makes little

sense for dense descriptions, as dense descriptions are partial functions; however, by careful

choice of a completion of one description, we can recover their construction of minimal pairs

with little added complexity.

Corollary 2.3.5. If Y is not densely computable and X is weakly 4-random relative to Y ,

then X and Y are a minimal pair for relative dense computability (and hence for dense

reducibility).
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Proof. Suppose C is densely computable relative to Y and relative to X. That is, suppose

there is some Φ such that ΦX and ΦY are both dense computations of C.

Let P be some set both PA and low over Y . Since P � Y , P computes a {0, 1}-valued

completion of ΦY ; let D ≤T P be such a completion. Since ΦY converges and agrees with

C on a density-1 set, we note that D is in fact a coarse description of C. In particular, since

ΦX is a dense computation of C, it must also be a dense computation of D.

However, since D ≤T P and P is low over Y , X is also weakly 4-random relative to D.

Since D is densely computable relative to X, by Theorem 2.3.4, we conclude that D must

be densely computable. Since any dense computation of D is a dense computation of C, C

must also be densely computable. Therefore, X and Y are a minimal pair for relative dense

computability.

Our argument goes through with only minor changes for effective dense computation;

combining our work for generic-case and dense computation, we can ensure that all conver-

gence is correct while also signaling in finite time whether or not convergence will occur.

Theorem 2.3.6. If A is not effectively densely computable, then

µ({X ∈ 2ω : A is effectively densely computable relative to X}) = 0,

and in particular, no element of this set can be weakly 4-random relative to A.

Proof. By countable additivity, it suffices to prove that µ(AΦ) = 0, where

AΦ = {X ∈ 2ω : ΦX is an effective dense description of A}

for a fixed computable functional Φ. Specifically, we use the definition whereby ΦX is an

effective dense description of A iff it is a total function with values from {0, 1, 2}, where

(ΦX)−1({2}) has density 0 and ΦX(n) 6= 1− A(n) for all n.

Towards a contradiction, suppose otherwise. By Lebesgue density, we can assume that
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µ(AΦ) > 7
8 . Define Sn =

{
X ∈ 2ω : ΦX(n) ↓= A(n)

}
. By the theorem, we must have

µ(Sn) ≥ 7
8 for all but a density-0 set of n’s. We can use this to compute an effective dense

description of A, using a majority-rule scheme.

Specifically, to calculate A(n), we wait to see ΦX(n) converge on a class with measure at

least 3
4 , and let f(n) be the plurality-rule value (for concreteness, breaking ties in favor of

2, then 0). f is, by the use principle, a partial computable function. Since µ(AΦ) > 7
8 >

3
4 ,

and every effective dense description is total, f must also be total.

Note that f(n) cannot converge to 1 − A(n); otherwise, we have a class In of measure

at least 1
3 ·

3
4 = 1

4 on which ΦX(n) ↓= 1 − A(n). Since for no X ∈ In is ΦX an effective

dense description of A, it must be that In and AΦ are disjoint; however, µ(AΦ) > 7
8 and

µ(In) ≥ 1
4 , so this is impossible.

If f(n) converges to 2, we have a class of measure at least 1
3 ·

3
4 = 1

4 on which ΦX(n)

converges to 2; therefore, µ(Sn) ≤ 3
4 . Since µ(Sn) ≥ 7

8 for all but a density-0 set of n’s, this

can only occur on a set of density 0. Therefore, f is an effective dense computation of A, in

contradiction to our assumptions.

Moreover, AΦ is a ΠA4 -class, as X ∈ AΦ iff

(∀q)(∃N)(∀n > N)(∃s)
[
(∀j < n)

[
ΦXe (j)[s] ↓= A(j) ∨ ΦXe (j)[s] ↓= 2

]
∧ |{j < n : ΦXe (j)[s] ↓= A(j)}| > n

(
1− 1

q

)]
.

Therefore, since AΦ has measure 0, AΦ contains no weakly 4-A-random.

Unfortunately, the method of Hirschfeldt, Jockusch, Kuyper, and Schupp [9] for con-

struction of minimal pairs appears to require a more subtle approach for effective dense

computability, if it can succeed at all; much the same obstruction appears in this case as

does for generic-case computability. We leave further work on this subject to a later paper.
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CHAPTER 3

INTRINSIC DENSITY

3.1 Introduction

In this chapter, we turn our focus from variant computations to reconsider Jockusch and

Schupp’s definition of negligibility. One would expect such a definition to have interesting

ties to classical computability theory. For one, a negligible set might be said to be “small”,

“sparse”, or even “thin”. Such “thinness” properties have historically been of great interest

in computability; they were the focus of Post’s program [22], the first attempt to construct

an incomplete c.e. set, and have since proven to be of interest for unrelated reasons.

Negligibility (in the sense of asymptotic density) is closed downwards under the subset

relation; any subset of a negligible set is itself negligible. It seems natural that it should

be in the same family as the classical immunity properties, which provide the unifying

computability-theoretic model for “thinness”. However, negligibility does not lend itself to

the same analysis that we apply to immunity. Choosing an alternate coding for the pa-

rameters of a membership problem is equivalent to applying a computable permutation to

the underlying set, which can dramatically alter its asymptotic density. The most extreme

example comes when we consider the class of infinite, co-infinite computable sets; the result-

ing consequences for c.e. and co-c.e. sets are essential to the remainder of this paper. We

will need one standard definition of computability theory to incorporate a result of Downey,

Jockusch, and Schupp: we say that a real a is left-Σ0
2 (left-Π0

2) if its left cut is Σ0
2 (Π0

2).

Proposition 3.1.1. Suppose A is an infinite, co-infinite computable set. For any left-Σ0
2

real a and any left-Π0
2 real b with 0 ≤ a ≤ b ≤ 1, there is a computable permutation π : ω → ω

such that π(A) has lower density a and upper density b.

Proof. We note first that there is an infinite, co-infinite computable set B with lower density

a and upper density b. In fact, this is nearly a theorem of Downey, Jockusch, and Schupp
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[5], which states that for any a and b meeting our preconditions, there is a computable set

B with lower density a and upper density b. Unless a = b = 0 or a = b = 1, this already

ensures that B is both infinite and co-infinite; if considering one of these cases, let B be the

set of perfect squares or its complement, respectively.

Since the infinite, co-infinite computable sets form an orbit under computable permuta-

tions, there is a computable permutation π : ω → ω such that π(A) = B; therefore, π(A)

has lower density a and upper density b.

Corollary 3.1.2. If A is infinite and c.e., there is a computable permutation π : ω → ω such

that π(A) has density 1.

Proof. Since A is infinite and c.e., A has an infinite (and co-infinite) computable subset B.

By Proposition 3.1.1, there is a computable permutation π : ω → ω such that π(B) has

density 1. Since B ⊆ A, π(B) ⊆ π(A), so π(A) must also have density 1.

Corollary 3.1.3. If A is co-infinite and co-c.e., there is a computable permutation π : ω → ω

such that π(A) has density 0.

Since any infinite c.e. set has density 1 under some computable permutation (and in fact

then has a density-1 computable subset), any problem that is decidable on some infinite

c.e. subset of ω is in fact effectively densely decidable if we choose the “correct” coding of

the input. The corresponding coding is usually highly artificial, having little to do with the

problem at hand.

In short, due to the sensitivity of asymptotic density to computable permutation, asymp-

totic computability is sensitive to the coding we choose for a given problem. As some of

the great strengths of Turing computability come from its invariance under choice of cod-

ing, we might hope to strengthen asymptotic computability in such a way as to recover this

invariance. To do so, we need to develop a stronger concept of negligibility, considering not

only the upper and lower densities of a set, but those of all its images under computable

permutations of ω.

23



In this chapter, we will study a new definition of negligibility as applied to the non-

negative integers; we will spend this chapter fitting this idea into its computability-theoretic

context, and then lay the foundations for further investigation into our motivating problem

in Chapter 4.

In Section 3.2, we follow this approach and obtain a new pseudo-measure, intrinsic den-

sity, which is invariant under computable permutations of ω. We discuss various classes

of sets that have intrinsic density, including the 1-random sets, which provide much of the

foundation for our investigations in the rest of this chapter.

For the remainder of the chapter, we turn our focus to the new properties of intrinsic

density. In Section 3.3, we begin by focusing on intrinsic density 0, the natural notion

of intrinsic negligibility, discussing it in the context of classical computability theory. In

fact, intrinsic density 0 is an immunity property, fitting naturally into the hierarchy between

immunity and cohesiveness, and we determine its place in the hierarchy for both unrestricted

and ∆0
2 sets. In order to complete our description, we improve on a result of Downey,

Jockusch, and Schupp [5], constructing a strongly hyperhyperimmune set with upper density

at least 1− ε below ∅′.

In Section 3.6, we reflect on the relation between intrinsic density and randomness, and

the connection it provides between classical computability and randomness. In fact, intrinsic

density provides a continuum from immunity to stochasticity, as any intrinsic density from

the range (0, 1) is a version of stochasticity (modulo a fixed bias), while intrinsic density 0 is

a form of immunity (as discussed in the previous Section). In fact, this correspondence can

be reversed to extract various strengthenings of asymptotic density from the assorted notions

of stochasticity — some of which may prove fruitful topics of interest for future research.

In Section 3.4, we characterize the Turing degrees of the negligible sets. In fact, our

results place non-trivial lower bounds on the degree of any set with well-defined intrinsic

density, with implications for some new notions of randomness. By contrast, when we

consider intrinsic lower density 0, a weakened notion that generalizes Post’s hyperimmunity,
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we find that (unlike hyperimmune sets) sets with intrinsic lower density 0 exist in every

non-computable degree.

Lastly, in Section 3.5, we take advantage of the effectiveness of our proofs from Section 3.4,

demonstrating that the computability-theoretic difficulty of constructing a set with intrinsic

density 0 is in fact a proof-theoretic result in the program of reverse mathematics. We

will show that the existence of a set with intrinsic density 0 is precisely equivalent to the

disjunction of two more standard principles,

3.2 Intrinsic density

Definition 3.2.1. Let S ⊆ ω. The absolute lower density ρ(S) of S is

ρ(S) := inf
π
ρ(π(S)),

and the absolute upper density ρ(S) of S is

ρ(S) := sup
π
ρ(π(S)),

where π : ω → ω is taken to vary over the set of computable permutations.

If the absolute upper and lower densities are equal, then we say that S has intrinsic

(asymptotic) density ρ(S), where

ρ(S) := ρ(S) = ρ(S).

In this case, not only does S have a density, but its density is fixed under all computable

permutations. We can develop analogous definitions for lower and upper densities; if ρ(S) =

ρ(π(S)) for all computable permutations π : ω → ω, we say that S has intrinsic lower density

ρ(S), and similarly for intrinsic upper density.

If a set has intrinsic density 0, we say it is intrinsically negligible.
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By Proposition 3.1.1, all infinite, co-infinite computable sets have absolute lower density

0 and absolute upper density 1. Thus, they are “as far as possible” from having an intrinsic

density, at least in the sense that, under computable permutations, their densities range as

widely as possible.

However, some might argue that 1-generic sets are further from having an intrinsic density

than computable sets. It is simple to show that all 1-generic sets have lower density 0 and

upper density 1. Since the class of 1-generic sets is closed under computable permutation,

we can conclude that all 1-generic sets in fact have intrinsic lower density 0 and intrinsic

upper density 1. This puts them “as far as possible” from having an intrinsic density, in the

sense that no computable permutation can bring their upper and lower densities together.

For the rest of our work in this paper, we will focus primarily on sets that have an in-

trinsic density, rather than classes of sets that do not. With a few examples, we begin to

establish the connections between intrinsic density and other computability-theoretic prop-

erties, and (particularly in discussing sets with intrinsic density strictly between 0 and 1)

lay the groundwork for our later results.

We start with the r-cohesive and r-maximal sets. Recall that an infinite set C is r-cohesive

if there is no computable set R such that R∩C and R∩C are both infinite, while a c.e. set

C is r-maximal if its complement is r-cohesive.

Theorem 3.2.2 (Jockusch, private correspondence). Every r-cohesive set has intrinsic den-

sity 0.

Proof. We note that if a set C is r-cohesive, then its image under any computable permu-

tation of ω is also r-cohesive; it thus suffices to prove that every r-cohesive set has density

0.

If we have a finite computable partition of ω (i.e., {R0, R1, . . . , Rn−1} computable and

pairwise disjoint, with union ω), C must have finite intersection with all but one of these Ri,

say Rj . By the finite subadditivity of upper density, ρ(C) ≤ 0 + ρ(C ∩ Rj) ≤ ρ(Rj). If we

take Ri = {kn+ i | k ∈ ω}, we have that ρ(Ri) = 1
n , so ρ(C) ≤ 1

n . Since n was an arbitrary
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natural number, the upper density of C must be 0, so ρ(C) = 0.

Corollary 3.2.3. Every r-maximal set has intrinsic density 1.

However, sets of intermediate intrinsic density (strictly between 0 and 1) provide a more

versatile basis for further investigation; as such, the 1-random sets will be essential to certain

constructions later in this paper.

Proposition 3.2.4. Every 1-random set has intrinsic density 1
2 .

Proof. Any 1-random set obeys the Law of Large Numbers, in the sense that it has density 1
2 .

[21, Prop. 3.2.13] Since the class of 1-random sets is closed under computable permutations

of ω, every 1-random set has intrinsic density 1
2 .

We can use 1-randoms to construct sets of other intermediate intrinsic densities as well,

by means of the following lemma and its corollaries.

Lemma 3.2.5. If A has density d, and B is 1-random relative to A, then A∩B has density

d
2 .

Proof. Interpreting B as a binary sequence, consider the A-computable subsequence B̂ se-

lected by the rule “If n ∈ A, select B(n).” Since B is 1-random relative to A, we see that B̂

must be an unbiased sequence; in other words, ρ(B̂) = 1
2 .

However, by the definition of B̂ and asymptotic density,

ρ(B̂) = lim
n→∞

|(A ∩B)�n|
|A�n|

,

so

ρ(A)ρ(B̂) =

(
lim
n→∞

|A�n|
n

)(
lim
n→∞

|(A ∩B)�n|
|A�n|

)
= lim
n→∞

|(A ∩B)�n|
n

= ρ(A ∩B).
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Therefore, A ∩B has density ρ(A)ρ(B̂) = d
2 .

Since being 1-random is invariant under computable permutation, we obtain one more

pair of corollaries:

Corollary 3.2.6. If A has intrinsic density d, and B is 1-random relative to A, then A∩B

has intrinsic density d
2 .

Corollary 3.2.7. If {A1, . . . , An} are mutually relatively 1-random sets (i.e., each set is

1-random relative to the join of the others), then
⋂

1≤i≤nAi has intrinsic density 2−n.

Having established a few tools to use in controlling the intrinsic density of sets (in this pa-

per, largely useful for the construction of counterexamples), we can now proceed to consider

intrinsic density in a broader context.

3.3 Intrinsic density and immunity

As discussed in the Introduction, asymptotic density was defined as a substitute for a proba-

bility measure on a countable space. Its use in generic-case computability (and other topics)

is in defining a density-0 set to be negligible, in the sense that its elements are eventually

scarce. This provides one of the more practical notions of a “small” or “thin” subset of the

integers, in some senses more natural than asserting that a set has no infinite c.e. subset

(i.e., is immune).

Unfortunately, having density 0 is not computably invariant. From the perspective of

computability theory, set properties that vary under computable permutation have limited

applications. By addressing this one issue, having intrinsic density 0 proves to be more

powerful; for example, any infinite set having intrinsic density 0 (or, in fact, any intrinsic

lower density other than 1) must be immune.

Proposition 3.3.1. Any infinite non-immune set has density 1 under some computable

permutation.
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Proof. This immediately follows from Corollary 3.1.2. If S is infinite and not immune, it

contains an infinite c.e. subset A. By Corollary 3.1.2, π(A) has density 1 for some computable

permutation π. Since S ⊇ A, π(S) ⊇ π(A), so π(S) must also have density 1.

Corollary 3.3.2. Any infinite set with intrinsic lower density 0, and hence, any infinite set

with intrinsic density 0, is immune.

It is clear that the upper density of a set bounds the upper density of any of its subsets,

so intrinsic density 0 is closed downwards under the subset relation. Since having intrinsic

density 0 is a computably invariant property, closed under subsets, and implies immunity,

intrinsic density 0 (here abbreviated id0) is a natural new immunity property, describing a

strong notion of “thinness”.

We therefore seek to determine its relation to the classical immunity properties:

Definition 3.3.3. A c.e. list of pairwise disjoint finite sets {Di} (indexed as finite sets, so

that the sets Di and the function i 7→ maxDi are computable) is said to be a strong array.

Similarly, a uniformly c.e. list of pairwise disjoint c.e. sets {Ui} is a weak array. There appears

to be no standard name for the intermediate concept, which we here term a computable array :

a c.e. list of pairwise disjoint computable sets {Ci} (indexed appropriately), with union
⋃
Ci

also computable.

An infinite set A is hyperimmune (sometimes abbreviated h-immune) if for every strong

array {Di}, there is some j such that A ∩ Dj = ∅; in this case, we say that {Di} fails

to meet A. Similarly, A is said to be strongly hyperimmune (sh-immune) if no computable

array meets A, and strongly hyperhyperimmune (shh-immune) if no weak array meets A. In a

slight generalization, we say A is finitely strong hyperimmune (fsh-immune) if no computable

array {Ci} with all Ci finite meets A, and hyperhyperimmune if no weak array {Ui} with all

Ui finite meets A.

It was quickly noted that a set A is hyperimmune iff no computable function dominates

its principal function pA(n) := (µx)[|S�x| ≥ n]; that is, for all computable functions f , we
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Figure 3.1: The graphs of the implications between the classical immunity properties; for
∆0

2 sets, the implications are the same as in the general case, except that shh-immunity and
hh-immunity become equivalent. All implications are strict, and any not shown (excepting
those implied by transitivity) are false.

have pA(n) ≥ f(n) infinitely often. Strengthening this, we say that an infinite set A is dense

immune if its principal function dominates all computable functions: for all computable

functions f and all sufficiently large n, we have pA(n) ≥ f(n).

An infinite set A is cohesive if, for all c.e. sets Ui, either A ∩ Ui or A ∩ Ui is finite.

We can weaken this in a few standard ways: A is r-cohesive if the same property holds for

computable sets Ci, or quasicohesive (q-cohesive) if A is a finite union of cohesive sets.

These properties are organized in a natural hierarchy of implication, shown as Figure 3.1.

Chapter XI.1 of Soare [25] provides an excellent reference for this hierarchy (though focused

on co-c.e. sets). We note that in the general case, the lack of implication between cohesiveness

and dense immunity is witnessed by the existence of a non-high cohesive set, as constructed

by Jockusch and Stephan [13]. Also, shh-immunity and hh-immunity are distinguishable in

the general case, but by a remark of Cooper [2], are equivalent for ∆0
2 sets (and thus for

co-c.e. sets).

By Theorem 3.2.2, r-cohesiveness implies intrinsic density 0. This has a simple corollary,

included here for completeness:
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Corollary 3.3.4. Every quasi-cohesive set has intrinsic density 0.

Proof. As a finite union of cohesive (and thus r-cohesive) sets, any quasi-cohesive set Q is a

finite union of sets of intrinsic density 0. Since density is finitely subadditive, Q must also

have intrinsic density 0.

It is slightly more interesting to note that dense immunity also implies intrinsic density

0. To show this, we note that dense immunity is computably invariant, and that a certain

domination property is equivalent to having density 0.

Lemma 3.3.5. For any infinite set S ⊆ ω,

ρ(S) := lim sup
n→∞

|S�n|
n

= lim sup
n→∞

n

pS(n)
,

where pS := (µx)[|S�x| ≥ n] is the principal function of S.

Proof. Consider the sequence {an} =
{
|S�n|
n

}
n∈ω

. We note that {bn} =
{

n
pS(n)

}
n∈ω

is an

infinite subsequence — in fact, bn = apS(n) for all n ∈ ω — so

lim sup
n→∞

bn ≤ lim sup
n→∞

an = ρ(S).

The sequence an may increase only at n in the image of pS (and thus at points also in the

subsequence bn), so these limits must be equal.

Proposition 3.3.6. An infinite set S ⊆ ω has density 0 iff its principal function dominates

all linear functions. (In standard asymptotic [“Big-O”] notation, S has density 0 iff pS(n) ∈

ω(n).)

Proof. S has density 0 iff ρ(S) = 0, and by the preceding lemma,

ρ(S) = lim sup
n→∞

n

pS(n)
.
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However, for all k > 0, lim supn→∞
n

pS(n)
< 1

k iff for all c ∈ R, pS(n) dominates kn + c;

therefore, ρ(S) = 0 iff pS(n) dominates kn+ c for all k > 0 and c ∈ R.

Proposition 3.3.7. If the set A is dense immune, π(A) is also dense immune for any

computable permutation π.

Proof. Let π be a computable permutation, and consider a computable function f . We define

f̂(n) = 1 + max
x∈[0,f(n))

π−1(x).

Since f̂ is a computable function, the principal function of A must dominate f̂ ; that is,

pA(n) > f̂(n) for all but finitely many n. In other words, for all sufficiently large n, there

are fewer than n elements of A less than f̂(n).

However, by construction of f̂ , every element of π(A) less than f(n) must come from an

element of A below f̂(n). Since for almost all n, there are fewer than n elements of A below

f̂(n), we see that pπ(A) dominates f . Since both f and π were arbitrary, every computable

permutation of A is dense immune.

Corollary 3.3.8. If S ⊆ ω is dense immune, S has intrinsic density 0.

Proof. By Proposition 3.3.7, dense immunity is a computably invariant property. It therefore

suffices to show that dense immunity implies density 0. However, this is an immediate con-

sequence of Proposition 3.3.6, as all linear functions are bounded by computable functions,

and so are dominated by the principal function of any dense immune set.

None of the remaining standard immunity properties imply intrinsic density 0. In fact,

as demonstrated by Downey, Jockusch, and Schupp [5], for every ε > 0, there is a strongly

hyperhyperimmune set with upper density at least 1−ε (though none have upper density 1),

constructed by Mathias forcing. We here extend their result, using a direct ∅′-computable

construction, to show that we may assume these sets to be ∆0
2. Of course, per the aforemen-
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tioned remark of Cooper [2], any ∆0
2 hh-immune set is in fact shh-immune; this apparently

does not simplify the argument required, so we will make no use of this fact.

Theorem 3.3.9. For all ε > 0, there is a ∆0
2 (s)hh-immune set A with upper density at

least 1− ε.

Proof. We assume that ε is rational; if not, we can replace it by any rational less than ε.

We will construct A as a ∅′-computable set, consulting ∅′ as an oracle during our otherwise-

computable construction.

We work to satisfy the requirements:

Pe : (∃n > e)[ρn(A) ≥ 1− ε],

Ne : (∀i, j)
[
(i 6= j) =⇒

(
Ue,i ∩ Ue,j = ∅

)]
=⇒ (∃ke)

[
A ∩ Ue,ke = ∅

]
,

where
{
Ue,i

}
is a listing of the uniformly c.e. sequences of sets. (In other words, every

uniformly c.e. sequence of sets is of the form
{
Ue,i

}
i∈ω for some e.)

The negative requirements Ne together assert that every weak array fails to meet A; this

is the definition of shh-immunity.

Our negative requirements should, in principle, be simple to satisfy. We simply omit a

set from each weak array of small lower density, thus leaving us with a set A with high upper

density. There are slight complications in ensuring that taking all of these requirements still

cannot force A’s upper density to fall below 1− ε, but these are easily addressed. After all,

at any given point n, only q disjoint sets can have partial density exceeding 1
q ; therefore, for

any weak array
{
Ue,i

}∞
i=0, there must be some Ue,k with lower density less than 2−eε.

The trouble comes in attempting to identify the Ue,k in question. ∅′ is incapable of

resolving whether a c.e. set has lower density below some bound; in fact, this problem is

Σ0
2-hard, as it would allow us to distinguish finite c.e. sets from total c.e. sets. Therefore, we

cannot search directly for such a Uk in our weak array, and must use more indirect methods.

Towards this end, we will make heavy use of the following sentence, for varying values of

33



e, n, and r:

(∃xn > xn−1 > · · · > x1 ≥ r)(∃s)(∃t > s)[
t ∈ Ce−1,s ∧ (∀i ≤ n)

[
ρt(Ue,xi) ≥ de

]]
.

(*)

Ce−1,s will be defined in the course of our construction, but is c.e.. The Ue,i’s are taken

from our listing of uniformly c.e. sequences of sets. As all sets involved are c.e., and we only

ask whether a c.e. set has partial density exceeding some lower bound, (*) is a Σ0
1 sentence,

and thus decidable by ∅′.

Putting (*) in context, we understand it to say that there are n elements of our weak

array
{
Ue,i

}
, not including any with index less than r, which all have high partial density

(exceeding de) at a single point t > s, where t is chosen from some c.e. set Ce−1 of possi-

bilities. Clearly, this sentence is vacuously true for n = 0, and (presuming our Ue,i’s to be

disjoint) necessarily false for n > 1
de

. Therefore, for any fixed r and e, the maximum n for

which this sentence holds is computable in ∅′ by a simple bounded search; let us refer to it

as N . If we have N such elements of a weak array, we refer to them together as a maximal

tuple for that array under the conditions Ce−1, r, and e.

If we have a maximal tuple for our weak array, and Ue,k is not among its members, then

we know that ρt(Ue,k) < de for some t ∈ Ce−1 with t > s. Otherwise, (*) would be satisfied

with n = N + 1. This will be our primary tool for controlling the lower density of the sets

we omit as we build A to avoid meeting the weak array
{
Ue,i

}∞
i=0.

Organization :

As we combine multiple negative requirements, we allow finite injury of each negative

requirement by higher-priority requirements, though never revoking any previous decisions

as to whether s ∈ A. We activate the requirements in order of decreasing priority, activating

at most one at each stage. At stage s, each active requirement independently decides whether

to allow s into A; we put s into A if none of these requirements object. For convenience, we

denote A�s by As.
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Each requirement Ne will maintain a c.e. set Se,s of elements such that, if A ∩ Se,s = ∅,

then Ne will be satisfied. For internal reference, we will also keep track of ke,s, which

determines which element of the weak array
{
Ue,i

}
we are actually restricting out of A.

Lastly, we will maintain a c.e. set Ce,s of locations where the partial density of Ue,ke,s is

known to be strictly less than 2−e−3ε, while guaranteeing that Ce,s ⊆ Ce−1,s at all stages s.

Ne’s basic goal is to prevent the weak array
{
Ue,i

}
from meeting A, while ensuring that

the lower density of its restricted set does not exceed de = 2−e−3ε. To do so, Ne will

repeatedly consult ∅′ regarding (*). In context, we can now see that we choose t ∈ Ce−1,s

to ensure that the density of the set we omit for Ne falls below de at the same time as the

densities of the previously-chosen sets fall below their critical values; this will make certain

that the density of our set A rises above its goal of 1− ε.

Module for Ne:

On activation at stage s: We first consult ∅′, asking whether the sets
{
Ue,i

}
are in fact

pairwise disjoint (i.e.,
{
Ue,i

}
is a weak array). If not, then Ne is trivially satisfied. In this

case, Ne will never restrict anything out of A; it simply maintains Se,t = ∅ and Ce,t = Ce−1,t

at all stages t ≥ s, while voting to allow all elements into A.

If
{
Ue,i

}
is a weak array, we define ke,s−1 to be the least k such that Ue,k �s = ∅. We

then set Se,s−1 = Ue,ke,s−1 , and let Ce,s−1 = ∅, as we do not yet know of any locations where

ρt(Se,s) < de.

At stage s: We assume that As = A�s has already been determined, and consider only

whether to allow s into A. Before making this decision, we must first determine whether we

can still believe that we can restrict Se,s−1 out of A while keeping ρ(A) close to 1. In fact,

we want to verify that Se,s−1 will again appear to have partial density less than de at some

point t > s where the partial density of Si,s (for all i < e) is also small.

If Ce,s−1 ∩ (s,∞) 6= ∅ (a ∅′-computable question), we have already verified this at some

previous stage. We simply define Se,s = Se,s−1, set ke,s = ke,s−1, and let Ce,s = Ce,s−1.

We then allow s into A iff s 6∈ Se,s.
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If Ce,s−1 ⊆ [0, s], though, we must attempt to verify that the partial density of Se,s−1

will fall below de at some point in the future. We know that ∅′ cannot answer this question

directly, as it cannot determine whether a c.e. set will ever have partial density less than

some critical value. We instead use (*) to attack from a different angle. We will need to

reference ke,s−1 several times in the remainder of the procedure; for simplicity’s sake, we

will abbreviate it by k = ke,s−1.

We first determine ne,s, the greatest value of n for which (*) holds with r = k. Since at

most b1/dec disjoint sets can have partial density exceeding de at the same location t, this

is a bounded search on a parameter of a Σ0
1 statement; thus, ∅′ suffices to compute ne,s.

We then ask ∅′ whether (*) holds with n = ne,s and r = k + 1. If so, then we have

a maximal tuple (within the array
{
Ue,i

}
for i > k) in which every set has high partial

density at the same point t > s. Since we cannot add Ue,k to this collection, we must have

ρt(Ue,k) < de. We define Ce,s to be the set of all t > s for which there is such a collection

(along with all t ≤ s for which ρt(Se,s) < de), set ke,s = ke,s−1 and Se,s = Se,s−1, and allow

s into A iff s 6∈ Se,s. If this case occurs immediately following injury or initialization of Ne

at stage s − 1, we say that s was a “recovery stage” for Ne; otherwise, we deactivate all

lower-priority requirements Ni (i > e), as Ce,s has changed.

Otherwise, the (*) does not hold with n = ne,s and x1 strictly greater than k. In this

case, we have no way to verify that the density of Ue,k again drops below de, and so consider

Ne to be injured. We vote to allow s into A, and deactivate all lower-priority requirements

Ni (i > e). We then effectively reset our procedure for Ne; we define ke,s to be the least

k > ke,s−1 such that Ue,k ∩ [0, s] = ∅, set

Se,s =
(
Se,s−1 ∩ [0, s)

)
∪ Ue,k,

and let Ce,s = ∅.
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Verification of the basic module:

Suppose that the module for Ne is at some point activated and never again deactivated

(i.e., Ce−1,s does not change at any later stage s). We assume that
{
Ue,i

}
is in fact a weak

array; if it is not, Ne is trivially satisfied, Se,s = ∅ has partial density identically 0 for all s,

and Ce,s = Ce−1,s does not change at any later stage s.

By the construction of Se,s, we know that Se = lims→∞ Se,s exists, and consists of all

elements restricted out of A by Ne. We will show that there is some stage s0 at which Ce,s0

is infinite, thus ensuring that Ce,s will not change at any later stage and preventing future

injury to Ne. This will also guarantee that Se = Se,s0 and ke = lims→∞ ke,s = ke,s0 .

Given such an s0, since A does not intersect Se,s0 ⊇ Ue,ke , we have satisfied Ne. Fur-

thermore, the partial density of Se approaches that of Ue,ke , as the sets agree on all x ≥ s0;

therefore, if the partial density of Ue,ke drops below de infinitely often, the partial density

of Se = Se,s0 must be less than 2de at all but finitely many of the same points.

We note that the sequence
{
ne,s

}
is nonincreasing, as we monotonically reduce the set

of witnesses for (*) at successive stages s. In fact, the sequence must decrease each time

Ce,s changes (except at recovery stages); this can only happen when we have run out of

witnessing collections of size ne,s−1. As for recovery stages, they can only occur immediately

after initialization of Ne, or immediately after an injury to Ne; since injuries cause ne,s to

decrease, any recovery stage is still associated with a corresponding decrease in ne,s. Since

for n = 0, (*) is vacuously true, ne,s is always a non-negative integer and so cannot decrease

infinitely often. Therefore, there must be some stage s0 such that Ce,t = Ce,s0 6= ∅ for all

t > s0, which is only possible if Ce,s0 is infinite.

Lastly, the module must force A ∩ Se = ∅. Whenever we choose a new ke,s, we always

choose a value k such that As∩Ue,k = ∅, and redefine Se,s accordingly to remain disjoint from

As. When we keep the same k, we allow elements into A iff they are not in Se,s. Therefore,

as long as Ne is active, we are assured that As ∩ Se,s = ∅ for all s; since Se�s = Se,s�s, we

will always have A ∩ Se = ∅.
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Construction of A:

At stage 0, begin by activating N0.

At stage s, check whether ρs(A) ≥ 1 − ε. If so, determine the highest-priority inactive

requirement Ne. If Ne was deactivated in stage s − 1, do not activate any requirements;

otherwise, activate Ne. (This delay in Ne’s reactivation ensures that Ne is not activated

during a recovery stage for Ne−1.)

Next, consult all active requirements in priority order. If any restrict s out of A, we

declare that s 6∈ A; if all allow s to enter A, we put s into A.

Verification:

Nothing can deactivate N0, so N0 is permanently activated. By the correctness of the

basic module, if the module for Ne is permanently activated, Ne will be satisfied. Further-

more, there is some stage s0 after which Ce,s does not change, so that Ne+1 will never again

be deactivated. Therefore, as long as there are infinitely many stages at which we activate

some inactive requirement, every module will be permanently activated at some point, and

thus every Ne will be satisfied.

Suppose, towards a contradiction, that some requirement is never permanently activated.

Let Ne be the highest-priority such requirement, so that only modules N0 through Ne−1 are

permanently activated. We consider the construction at stage s0, after the last such module

has been permanently activated and Ce−1,s has stopped changing (and is infinite).

At this stage, Ne can never again be deactivated, so sinceNe is not permanently activated,

Ne must never again be activated. This can only be because the construction will never reach

another stage where it activates the highest-priority inactive requirement; therefore, it must

be that A∩ (s,∞) contains all elements except those in S =
⋃
i<e Si, and ρt(A) < 1− ε for

all t > s. For all sufficiently large n, we have that ρn(A) < 1− ε implies ρn(S) > 1
2ε; thus,

ρn(S) > 1
2ε for all sufficiently large n.

However, ρn(S) = ρn(
⋃
i<e Si) ≤

∑
i<e ρn(Si). Recall that for all but finitely many
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n ∈ Ce−1, we have ρn(Si) < 2de = 2−n−2ε, so

ρn(S) ≤
∑
i<e

2−i−2ε <
1

2
ε.

Since Ce−1 is infinite, this is a contradiction; therefore, all modules Ne must be permanently

activated eventually.

Finally, since every module is eventually activated, we must activate a new module in-

finitely often. This can only happen if ρs(A) ≥ 1 − ε infinitely often, so every requirement

Pe is also satisfied; A must have upper density at least 1− ε.

We have yet to consider implications in the other direction; what immunity properties

are implied by intrinsic density 0? The first such result is simple; as established above in

Corollary 3.3.2, intrinsic density 0 at least implies immunity for infinite sets.

On the other hand, we already know that hyperimmunity (even shh-immunity) does not

imply intrinsic density 0. We can further prove that a set of intrinsic density 0 need not be

hyperimmune; we can construct ∆0
2 counterexamples, and in fact will build a counterexample

below every 1-random set.

Theorem 3.3.10. For every 1-random set R, there is an infinite set A ≤T R with intrinsic

density 0 that is not hyperimmune.

Proof. Suppose that K(R�n) ≥ n− c for all n.

By van Lambalgen’s Theorem [27], given a 1-random set R, there exists a uniformly

R-computable sequence of sets
{
Rj
}
j∈ω that are mutually relatively 1-random. In fact,

defining R̂j =
⊕

i<j Ri, we have that

KR̂j (Rj � n) ≥ n− dj

for all n, where dj is uniformly computable from j and c; this can be shown by a simple

inspection of a proof of van Lambalgen’s Theorem.
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Let A0 = R0. Since A0 is 1-random, it has intrinsic density 1
2 . Given d0 and using

the incompressibility of R0, we can compute k0 such that |R0 � k0| ≥ 1, ensuring that

A0 ∩ [0, k0) 6= ∅. Since k0 is computable, we can use [0, k0) as the first partition in a weak

array that will witness that the set we construct A is not hyperimmune.

We then define

A1 = A0 ∩ ([0, k0) ∪R1).

Since A1 =∗ R0 ∩ R1, and R0 and R1 are mutually relatively 1-random, A1 must have

intrinsic density 1
4 by Corollary 3.2.7. Using d0 and d1 along with the incompressibility of

R1 (relative to R0), we can compute k1 such that |A1 ∩ [k0, k1)| 6= ∅.

Repeating this process, we see that A =
⋂
j Aj is computable in R, since A� kj = Aj� kj .

For all j, we have that A ∩
[
kj−1, kj

)
6= ∅, so A is infinite. Furthermore, since the kj ’s

are uniformly computable from c, an integer, this partition of ω is in fact computable,

demonstrating that A is not hyperimmune.

Finally, A ⊆ Aj for all j. Since Aj =∗
⋂
i≤j Ri, and the Ri’s are mutually relatively

1-random, Aj has intrinsic density 2−j−1; therefore, A must have intrinsic density 0.

As a convenient side effect, this theorem immediately gives us some information on the

Turing degrees of infinite sets with intrinsic density 0: such sets exist below every 1-random

Turing degree, but cannot be computable. Among other things, this implies that there are

infinite id0 sets in non-computable ∆0
2, low, and even hyperimmune-free degrees (where our

construction of a non-hyperimmune A becomes rather superfluous, though it at least ensures

that A is infinite).

It still eliminates any hopes we might have of further positive implications between the

immunity properties and intrinsic density, as we will discuss in our summary below. By

falling back to intrinsic lower density, we can recover one more positive implication, as

shown by Jockusch in private correspondence.

Theorem 3.3.11. Every hyperimmune set has intrinsic lower density 0.
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Proof. Since hyperimmunity is computably invariant, it suffices to show that every hyper-

immune set has lower density 0.

Suppose A is hyperimmune. Consider the strong array

Dn = [n!, (n+ 1)!) .

Since A is hyperimmune, A ∩ Dn = ∅ for infinitely many n. For all such n, we have that

|A�(n+ 1)!| ≤ n!; therefore, ρ(n+1)!(A) ≤ 1
n . Since this occurs infinitely often, we conclude

that ρ(A) = 0.

The above results, along with earlier work [5, 12], will suffice to disprove all other potential

implications between intrinsic density 0, intrinsic lower density 0, and the standard immunity

properties.

We first repeat, per Jockusch and Schupp [12], that any 1-generic set has lower density

0 and upper density 1; since 1-genericity is computably invariant, 1-generics in fact have

intrinsic lower density 0 and intrinsic upper density 1. Therefore, intrinsic lower density 0

does not imply intrinsic density 0, even for ∆0
2 sets.

In addition, all 1-random sets are immune; otherwise, there would be a 1-random R with

an infinite computable subset, which admits a trivial computable martingale that succeeds

on R. Since 1-randoms have intrinsic density 1
2 , immunity does not imply intrinsic lower

density 0, even for ∆0
2 sets.

Lastly, Theorem 3.3.9 above demonstrates that for every ε > 0, there is a shh-immune set

(in fact, a ∆0
2 hh-immune set) with upper density at least 1−ε. In particular, shh-immunity

does not imply intrinsic density 0, even for ∆0
2 sets.

Combining these counterexamples with our results above, we exhaust all possible impli-

cations between intrinsic density 0, intrinsic lower density 0, and the standard immunity

properties. The graph of the resulting implications for infinite sets is shown in Figure 3.2;

all implications depicted are strict, and counterexamples are discussed above for all arrows
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Figure 3.2: The graph of implications between the classical immunity properties and intrinsic
density 0. The single dashed arrow indicates an open implication. Again, for ∆0

2 sets, shh-
immunity and hh-immunity become equivalent; all other implications are as depicted for
general sets. (We abbreviate intrinsic [lower] density 0 for infinite sets by I[L]D0.)

not present in the diagram.

Unfortunately, in the c.e. case (well-studied due to Post’s Program), the majority of our

proofs of failures of implication collapse. Since hh-simplicity does imply dense simplicity

for c.e. sets, it seems unlikely that our proof method from Theorem 3.3.9 will help separate

the higher immunity properties from intrinsic density 0. In fact, most of our other failures

of implication are exhibited by 1-generics or derived from 1-randoms, examples that are

inherently not c.e. We will recover one of these in Section 3.4; by Corollary 3.4.8, there are

hypersimple sets with lower density 0, so hypersimplicity does not imply intrinsic density 1.

This leaves the c.e. diagram incomplete, with one family of questions remaining:

Open Question 3.3.1. Is there an infinite c.e. set with intrinsic density 1 that is not

hypersimple? Not (f)sh-simple?
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3.4 Intrinsic density and computability

Since we’ve established (by Proposition 3.1.1) that infinite co-infinite computable sets cannot

have intrinsic density, we might begin to ask precisely which Turing degrees compute effec-

tively negligible sets. After all, all such sets are intrinsically asymptotically computable in

some sense, so this would seem likely to help us develop the appropriate notions of intrinsic

asymptotic computation. Moreover, most other notions of immunity carry some implication

of computability-theoretic strength, and their study has proven extremely rich; it would be

surprising if effective negligibility was the exception to the rule.

Of course, we have already established some upper bounds on the information content

required for a set to have intrinsic density 0. As every r-cohesive set has intrinsic density 0

(3.2.2), these sets exist in every cohesive degree, and hence in every high degree. Moreover,

in Theorem 3.3.10, we found sets with intrinsic density 0 below every 1-random set, and

thus computable in assorted low or even hyperimmune-free degrees. Though not one of

the more typical combinations found in computability, there is in fact a connection between

these constructions, centering on a notion introduced by Kjos-Hanssen, Merkle, and Stephan

[15] in their study of eventually different functions (though we use the name introduced in

Downey and Hirschfeldt [3]).

Definition 3.4.1. A set A is weakly computably traceable if there is a computable function

h such that for all f ≤T A, there is a computable sequence of finite sets Vn with |Vn| ≤ h(n)

for all n and f(n) ∈ Vn for infinitely many n; that is, if we can infinitely often guess the

value of f(n) using a computable guessing strategy limited to at most h(n) guesses.

By a result of Kjos-Hanssen, Merkle, and Stephan [15] (their Theorem 5.1), a set A

is weakly computably traceable (WCT) iff it has neither high nor DNC degree; that is,

iff it computes neither a dominant function [18] nor a diagonally non-computable function.

Thus, weak computable traceability is a property of Turing degrees expressing computability-

theoretic weakness.
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Since all 1-random sets compute a DNC function, and all r-cohesive sets have either high

or DNC degree [13], all of our prior constructions of a set with intrinsic density 0 were built

below non-WCT sets. We can now show that this was no coincidence.

Theorem 3.4.2. Every infinite set A that is weakly computably traceable has upper density

1 under some computable sampling, and thus has absolute upper density 1.

Proof. By the same equivalence of Kjos-Hanssen, Merkle, and Stephan [15], A is weakly

computably traceable iff for all f ≤T A, there is a total computable function h such that

h(n) = f(n) for infinitely many n.

Let f(n) code pA(j) for all j < n!; specifically, take f(n) = A�pA(n!). Clearly f ≤T A,

so there is a total computable h with h(n) = f(n) for infinitely many n.

We define a total computable injection g by assigning values g(j) in increasing order of

j. If j ∈ [(n− 1)!, n!), define g(j) to be the position of the j-th 1 in the string h(n), unless

this value is already assigned to some g(i) with i < j; in that case, we instead define g(j) to

be the least value not assigned to any earlier g(i).

For any n where h(n) = f(n), we then have g(j) ∈ A for all j ∈ [(n− 1)!, n!), unless the

requisite value was already assigned at that stage. In any event, g([0, n!)) contains at least

n!− (n− 1)! elements of A, so ρn!(g
−1(A)) ≥ 1− 1

n . Since this occurs for infinitely many n,

we conclude that g samples A with upper density 1, and thus (by Lemma 3.6.2) that A has

absolute upper density 1.

Corollary 3.4.3. Every infinite co-infinite set A that is weakly computably traceable has

absolute upper density 1 and absolute lower density 0.

Proof. Apply Theorem 3.4.2 to both A and A.

What’s more, we can generalize our prior constructions to build a set with intrinsic

density 0 in every other degree.

Theorem 3.4.4. Every set A that is not weakly computably traceable computes a set with

intrinsic density 0.
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Proof. By definition, A is not weakly computably traceable iff for all computable orders h,

there is some f ≤T A such that for no computable function g(n) do we have |Dg(n| ≤ h(n)

for all n and f(n) ∈ Dg(n) infinitely often.

Take h(n) = n2 (or, indeed, any computable superlinear function), and let f ≤T A be as

above. We claim that Gf = {〈n, f(n)〉 : n ∈ N}, the graph of f , has intrinsic density 0.

Suppose not; in particular, suppose that Gf has upper density greater than 1
q under some

computable permutation π. Thus, Gf has partial density exceeding 1
q in the first s positions

for infinitely many s. For such s, we have that π([0, s)) contains at least s
q elements of Gf ,

and thus must contain 〈m, f(m)〉 for some m ≥ s
q − 1. Therefore, for infinitely many m, we

have that π([0, (m+ 1)q)) contains 〈m, f(m)〉.

For all n, define Dg′(n) = {y : 〈x, y〉 ∈ π([0, (n+ 1)q))}. For all sufficiently large n,

h(n) ≥ (n+ 1)q; thus, there is a computable function g such that Dg(n) ≤ h(n) for all n and

g(n) = g′(n) for all sufficiently large n.

However, as noted above, π([0, (m+ 1)q)) contains 〈m, f(m)〉 for infinitely many m. As

this implies that f(m) ∈ Dg(m) for infinitely many m, this contradicts our choice of f .

Therefore, we conclude that Gf has intrinsic density 0.

By a result of Jockusch [11], the class of Turing degrees containing sets with intrinsic

density 0 is upwards closed, as this class is closed under subset and contains an arithmetic

member (for instance, any ∆0
2 cohesive set). Combining this observation with Corollary 3.4.3

and Theorem 3.4.4, we obtain the following corollary:

Corollary 3.4.5. The Turing degrees containing an infinite set of intrinsic density 0 are

precisely those that are not weakly computably traceable; that is, those that are either high or

DNC.

Since all weakly computably traceable sets have absolute upper density 1 by Theo-

rem 3.4.2, this gives a 0-1 law for absolute upper density:
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Corollary 3.4.6. A Turing degree contains no set with absolute upper density 0 iff all its

sets have absolute upper density 1.

In fact, we can broaden our results slightly to all sets with defined intrinsic density, since

Corollary 3.4.3 states that no non-trivial weakly computably traceable set has any defined

intrinsic density.

Corollary 3.4.7. The Turing degrees containing infinite co-infinite sets with intrinsic den-

sity are precisely those that are not weakly computably traceable; that is, those that are either

high or DNC.

By Arslanov’s completeness criterion, any DNC c.e. set is in fact Turing-equivalent to ∅′;

therefore, each non-high co-infinite c.e. set has absolute lower density 0, as its complement

is weakly computably traceable.

On the other hand, as there is a dense simple (in fact, maximal) set in every high c.e.

degree (Martin [18]), every high c.e. degree contains a c.e. set with intrinsic density 1, by

Corollary 3.3.8. Therefore, the Turing degrees computing a c.e. set of intrinsic density 1 are

precisely the high c.e. degrees.

Since there are non-high hypersimple sets (in fact, every non-computable c.e. degree

contains a hypersimple set), this answers one of our last questions from Section 3.3:

Corollary 3.4.8. There is a hypersimple set with lower density 0.

Proof. Let A be any non-high hypersimple set. Since A is c.e. and non-high, it is weakly

computably traceable, and therefore has lower density 0 under some computable sampling.

Permuting A by the computable permutation constructed in the proof of Lemma 3.6.2, and

noting that hypersimplicity is computably invariant, we obtain a hypersimple set with lower

density 0.

By contrast, intrinsic lower density is much simpler to control. In fact, we find that

the traditional construction of an immune set in every non-computable degree in fact yields

something slightly stronger:
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Theorem 3.4.9. Let S be the set of prefixes of a set A. If A is not computable, then S has

intrinsic lower density 0.

Proof. Suppose S = {A�n : n ∈ N}, the set of prefixes of A, does not have intrinsic lower

density 0. By definition, there exists some total computable injection ϕe and some integers

q and N such that ρn(ϕ−1
e (S)) > 1

q for all n > N .

Given e, q, and N , we construct the computable binary tree T as follows:

T begins as a full tree up to height N . For strings σ of length n > N , we put σ into T if

and only if its prefixes are in T and ϕe([0, 2qn)) contains at least n strings extending σ.

As no two distinct strings of the same length can share an extension, and since σ ∈ T

implies that ϕe([0, 2q|σ|)) contains at least |σ| extensions of σ, we see that T has width at

most 2q at all heights n > N .

By assumption, ϕe samples the prefixes of A with partial density always exceeding 1
q

beyond a point N ; therefore, for n > N , ϕ([0, 2qn)) must contain at least 2n prefixes of A,

and so must include at least n extensions of A�n. Thus, A must be a path on T .

Since T is a computable tree with bounded width, A is computable.

Again, by the aforementioned result of Jockusch [11], the class of Turing degrees contain-

ing sets with intrinsic lower density 0 is upwards closed. Therefore, our theorem becomes a

characterization of this class:

Corollary 3.4.10. The Turing degrees containing an infinite set with intrinsic lower density

0 are precisely the non-computable degrees.

Corollary 3.4.11. The Turing degrees containing a co-infinite set with intrinsic upper den-

sity 1 are precisely the non-computable degrees.
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3.5 Intrinsic density in reverse mathematics

In this section, we make common reference to an arbitrary model of second-order arithmetic,

M = (M,S,+, ·, 0, 1),

where M and S are, respectively, the first- and second-order parts of the structure.

We note that the proofs of Theorems 3.4.2 and 3.4.4, as given above, appear sufficiently

constructive to hold in RCA0, demonstrating in a vague sense that the existence of a set

that is not weakly computably traceable should be reverse-mathematically equivalent to the

existence of a set with intrinsic density 0 over RCA0.

To make this more precise, we must use the notion of a weakly-represented family of

functions, as introduced by Zhang and Stephan [29].

We recall their definitions:

Definition 3.5.1 (Weakly-represented partial functions). A partial function f is weakly

represented by the set A if all of the following conditions hold:

• [Representation] For all x and y, f(x) ↓= y iff there is some z such that 〈x, y, z〉 ∈ A.

We say A witnesses that f(x) converges to y.

• [Consistency] If 〈x, y, z〉 and 〈x, y′, z′〉 are both in A, then y = y′.

• [Monotonicity] If 〈x, y, z〉 ∈ A, then for all z′ > z, we also have 〈x, y, z〉 ∈ A.

• [Downward closure] If A witnesses that f(x) converges, then it also witnesses that f(t)

converges for all t < x.

By convention, for f weakly represented by A, we say that f(x) converges to y by step z

(f(x)[z] ↓= y) if y < z and 〈x, y, z〉 ∈ A. Along the same line, we say that f(x)[s] converges

iff it converges to some y < s; this restriction ensures that the question of whether f(x)[s]

converges is decidable in our representation of f .
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Definition 3.5.2 (Weakly-represented families). A class of partial functions {fe}e∈M is

weakly represented in our model iff S contains a uniform family of sets {Ae}e∈M (represented

by A = {〈e, x〉 : x ∈ Ae} ∈ S) such that Ae weakly represents fe.

A class of total functions F is weakly represented in our model iff S contains F and a

weakly-represented class of partial functions {fe}e∈M such that a total function f is in F

iff f = fe for some e ∈M .

Restricting ourselves to 0-1 functions in the latter case naturally provides the idea of a

weakly-represented family of sets.

These definitions enable us to discuss the subset of total functions within a larger class

of p.c. functions. For instance, the family of all computable functions (or sets) is weakly

representable in RCA0.

Zhang and Stephan defined these notions to formulate, as reverse-mathematical princi-

ples, the many concepts from classical computability theory which naturally address the class

of total functions, such as dominating functions (their DOM) or cohesive sets (COHW).

Statement 3.5.3 (DOM). For every weakly-represented family of total functions F , there

is a function g such that, for each f ∈ F , there is some b ∈M such that g(x) > f(x) for all

x > b.

Statement 3.5.4 (COHW). For every weakly-represented family of sets F , there exists

an F -cohesive set.

It should be noted that we can also give an alternate form of DNR, equivalent to the

standard form over RCA0:

Statement 3.5.5 (DNRW). For every weakly-represented family of (partial) functions

F = {fe}e∈M , there exists a function F such that F (e) 6= fe(e) for all e ∈ M such that

fe(e) ↓.

Theorem 3.5.6. Over RCA0, DNR and DNRW are equivalent.
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Proof. To see that DNRW implies DNR, we note that though we cannot weakly represent

the standard listings of partial functions
{
ϕAe

}
(since ϕAe ’s domain need not be an initial

segment of M), we can weakly represent the family of partial functions
{
fAe

}
given by

fAe (n) = ϕe(e). Any function diagonally disagreeing with
{
fAe

}
must in fact be DNR for A.

The converse implication is also relatively straightforward. Fixing some weakly-repre-

sented family of partial functions {fe} uniformly computable from A, we pass to another

family, still uniformly computable from A:

g2e(2n) = g2e(2n+ 1) = fe(n),

g2e+1(n) = ϕAe (n).

Since the fe’s were uniformly computable from A, this family {gk} is an effective universal

listing of partial A-computable functions; therefore, by DNR, there is some G such that if

gk(k) ↓, then G(k) 6= gk(k). In particular, if fe(e) = g2e(2e) ↓, then G(2e) 6= fe(e). Thus,

defining F (e) = G(2e), we see that our original family {fe} satisfies DNRW via F .

Similarly, we can state the existence of a set of intrinsic density 0 as a reverse-mathe-

matical principle, as follows:

Statement 3.5.7 (ID0). For every weakly-represented class of total functions F , there

exists a set A such that every injective f ∈ F samples A with density 0. That is, taking F̂

to be the weakly-represented class of total injections contained in F ,

(∃A)
(
∀f ∈ F̂

)[
ρ(f−1(A)) = 0

]
.

Combining our proofs of Theorems 3.4.2 and 3.4.4 with the proof of Theorem 5.1 from

Kjos-Hanssen, Merkle, and Stephan [15], we can factor out all intermediate results and obtain

proofs obviously holding over RCA0. In fact, we will show that ID0 is equivalent to the

disjunction of DNRW and DOM:
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Statement 3.5.8 (DNRW∨DOM). For every weakly-represented family of (partial) func-

tions F = {fe}e∈M , there exists either a function F dominating all total functions in F or

a function g such that g(e) 6= fe(e) for all e ∈M .

All proofs would hold if we restrict ourselves to classes containing only total functions,

avoiding the complication of weak representation — but in this case, the result is trivial, as

all three simplified principles are simply true in RCA0.

Theorem 3.5.9. RCA0 + ID0 |= DNRW ∨DOM.

Proof. Let F = {fe}e∈M be a weakly-represented class of partial functions. Without loss

of generality, assume that F is universal; that is, if there is a total function f ≤T F , then

f ∈ F . (In particular, we can interleave a weak representation of a universal family of

partial F -computable functions much as we did with our universal diagonal in our proof of

Theorem 3.5.6, ensuring that F satisfies DNRW if this broader class does.)

By ID0, there is a set A such that every injective f ∈ F samples A with density 0. By

RCA0, there exists a function f ≤T A with f(n) = A�pA(n!).

If there is some N ∈M such that f(n) 6= fn(n) for all n > N , then there must exist f̂ (a

finite variation on f) such that f̂(n) 6= fn(n) for all n ∈M ; therefore, F satisfies DNRW.

Otherwise, we define

p(k) := (µs)(∃n ≥ k)[fn(n)[s] ↓= f(n)].

Such a function exists, since in this case p is total and computable from f .

Suppose there is some total q ∈ F such that q(k) ≥ p(k) for an unbounded set of k ∈M ;

without loss of generality, we assume q is strictly increasing. We define a new function

h(n) = fn(n)[q(n)] if this converges, and otherwise arbitrarily assign h(n) = 0. Of course,

h ≤T F , since F suffices to determine whether fn(n) converges by step q(n).

Taking any k with q(k) ≥ p(k), we know (by the definition of p(k)) that there is some
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n ≥ k such that fn(n)[p(k)] ↓ f(n); therefore,

f(n) = fn(n)[p(k)] = fn(n)[q(k)] = fn(n)[q(n)] = h(n).

Thus, since q(k) ≥ p(k) for an unbounded set of k’s, there is also an unbounded set of n’s

such that h(n) = f(n). We use this to construct a total injection g ≤T h (and therefore

≤T F) as follows:

Taking each j ∈M in increasing order, we find n such that (n−1)! ≤ j < n!. Interpreting

h(n) as a binary string of length n!, let (h(n))j denote the position of the j-th 1 in this string

if it exists; otherwise, take (h(n))j = 0. We then set g(j) = (h(n))j if there is no i < j with

g(i) = (h(n))j ; otherwise, we set g(j) to be the least number in M greater than g(i) for all

i < j.

Consider any n with h(n) = f(n). We have (h(n))j = (f(n))j for all j < n!, so for

all j ∈ [(n− 1)!, n!), the j-th smallest element of A is equal to g(i) for some i ≤ j. Thus,

g([0, n!)) contains at least n!− (n− 1)! elements of A, and therefore,

ρn!(g
−1(A)) ≥ n!− (n− 1)!

n!
= 1− 1

n
.

Since this holds for an unbounded set of n’s, we conclude that A has upper density 1 under

the sampling g ≤T F .

However, since F is universal, this shows that A has upper density 1 for some g ∈ F ,

contradicting our assumption every injective f ∈ F samples A with density 0. Therefore, it

must be that for each total q ∈ F , there is some b ∈ M such that q(k) < p(k) for all k > b;

in other words, p is a dominating function for the total functions in F , and so F satisfies

DOM.

Thus, we see that every weakly-represented class of functions in M satisfies either

DNRW or DOM.

Theorem 3.5.10. RCA0 + (DNRW ∨DOM) |= ID0.
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Proof. Consider some weakly-represented family of (partial) functions F = {fe}e∈M ; with-

out loss of generality, we assume F is universal. By DNRW ∨ DOM, there exists either

a function F dominating all total functions in F or a function f with f(n) 6= fn(n) for all

n ∈M .

Suppose that there is a function F dominating all total functions in F ; without loss of

generality, we may assume F to be strictly increasing. We define I to be the image of F :

I = {n ∈M : (∃s)[f(s) = n]}.

Suppose there is some total injective fe ∈ F sampling I with positive upper density. We

then choose some q ∈M with ρ(f−1
e (S)) > 1

q , and define h(n) = 1 + maxs≤(n+1)q fe(s).

By our choice of fe, there is an unbounded set of s’s such that fe([0, s)) contains at least

s
q values of F , and thus includes F (m) for some m ≥ s

q−1. Therefore, there is an unbounded

set of n’s such that g([0, (n+ 1)q)) contains F (n).

For each such n, we have h(n) > F (n). Since F is a dominating function for all functions

in F , this implies that h(n) 6∈ F . However, h ≤T g ∈ F , contradicting our assumption

that F is universal. Therefore, if every total function in F is dominated by F , every total

injection in F samples I with density 0.

On the other hand, suppose instead that there is a function g with g(n) 6= fn(n) for all

n ∈M . Fix a universal-for-F machine U , and let Ψ be the computable functional such that

ΨX(x) = (µy)[〈x, y〉 ∈ X]

if for all x′ ≤ x, there exists some y′ such that
〈
x′, y′

〉
∈ X; otherwise, ΨX(x) ↑.

We then define e(σ) (for any M -finite binary string σ) such that fe(σ) = ΨU(σ) (possible,

since F is universal), and let

p(n) = 1 + max
|σ|<5 log n

〈e(σ), g(e(σ))〉.
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Since p ≤T g, p exists in M.

Using this, we define the set P = {A�p(n)}n∈M , where A = G(g); we will show that

every total injective fe ∈ F samples P with density 0.

Suppose, for the sake of contradiction, that there is some s such that fe is a total injection

sampling P with positive upper density; specifically, take this upper density to be greater

than 1
q . We define h so that h(n) codes the M -finite set Dh(n) = fe(

[
0, n2

)
); clearly,

h ≤T fe ≤T F .

By assumption, there is an unbounded set of s’s such that fe([0, s)) contains at least s
q

elements of P , including (A�p(m)) for some m ≥ s
q −1. Therefore, there is an unbounded set

of n’s such that fe([0, (n+ 1)q)) contains (A�p(n)). Since n2 ≥ (n + 1)q for all sufficiently

large n, there is an unbounded set of n’s such that (A�p(n)) ∈ Dh(n).

Take k(n) to be the 2-to-1 prefix-free binary coding of n ∈ M (with end symbol) in

2 log n + 2 bits. For x < n2, let cn(x) be the standard binary coding of x in 2 log n bits.

Since U is a universal machine for F and h ≤T F , there is a string σ such that, for x < n2,

U(σ_k(n)_cn(x)) is the x-th element of Dh(n).

For all n such that (A�p(n)) ∈ Dh(n), we define σn = σ_k(n)_cn(x), where x is the

index of (A�p(n)) in Dh(n). By construction, |σn| = 4 log n + |σ| + 2, so for all sufficiently

large n, we have |σn| < 5 log n.

Choose some N such that (A�p(N)) ∈ Dh(N) and |σN | < 5 logN . By the definition of

e(σ), we have that

fe(σN )(e(σN )) = ΨU(σN )(e(σN )) = ΨA�p(N)(e(σN )).

However, ΨA(e(σN )) = g(e(σN )), by our choice of A and Ψ. Since we assumed g(e) 6= fe(e)

for any e ∈M where fe(e) converges, we must have ΨA(e(σN )) 6= fe(σN )(e(σN )). Therefore,

ΨA�p(N)(e(σN )) 6= ΨA(e(σN )) = g(e(σN )).
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In other words, p(N) ≤ 〈e(σN ), g(e(σN ))〉. Since |σN | < 5 log n, this contradicts our defini-

tion of p; therefore, no total injection in F samples P with positive upper density.

Combining these, we obtain our desired result:

Corollary 3.5.11. ID0 is equivalent to DNRW ∨DOM over RCA0.

Zhang and Stephan’s principle AVOID is, of course, also relevant to our discussion, as

it directly represents the existence of a function that is not weakly “computably” traceable.

Statement 3.5.12 (AVOID). For every weakly-represented family of total functions F ,

there is a function g such that for each f ∈ F , the set {x ∈M : f(x) = g(x)} is bounded.

It is not difficult to see that our proof of Theorem 3.4.2 is valid in RCA0, directly showing

that ID0 implies AVOID over RCA0. To adapt our proof of Theorem 3.4.4 to show that

AVOID implies ID0, however, we must again incorporate certain aspects of the equivalence

from Kjos-Hanssen, Merkle, and Stephan [15]. Using much of the same approach as in our

proof of Theorem 3.5.10 above, it is possible to adapt their proof of this equivalence to show

that AVOID is equivalent to DNRW ∨ DOM over RCA0, as anticipated; we omit the

details here. Combining these results with Corollary 3.5.11, we see that:

Theorem 3.5.13. The following are equivalent over RCA0:

• ID0,

• AVOID, and

• DNRW ∨DOM.

3.6 Intrinsic density and randomness

Let us move from the extremes of density (density 0 or 1) to the intermediate densities, as

exemplified by density 1
2 .
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The notion of “density 1
2” is easily recognized as the Law of Large Numbers, as applied to

a sequence of flips of a fair coin. We might hope that having density 1
2 would be in some way

related to a randomness-theoretic property, and stochasticity is the obvious candidate. This

follows von Mises [28] in establishing the existence of limiting frequencies as the key property

of a random sequence and, more specifically, the preservation of limiting frequencies under

place-selection rules that determine the next bit sampled based only on the values previously

sampled. If C is such a class of selection rules, we say that a sequence S is C-stochastic if no

selection rule in C can select a biased (non-density-1
2) subsequence from S. We say that a

selection rule is monotonic if the places it selects are always in increasing order, and oblivious

if the places it selects are independent of S, the sequence subject to the selection rule.

There are several standard notions of stochasticity that will be useful to keep in mind.

Church-stochastic sequences are stochastic under computable monotonic selection rules,

whereas von Mises-Wald-Church-stochastic sequences are stochastic under partial comput-

able monotonic selection rules. By this definition, sets with density 1
2 might be termed

“trivially stochastic”; that is to say, they are unbiased under the single selection rule that

selects all positions in order. However, this is rarely considered, as stochasticity is generally

taken to require selection of proper subsequences.

Passing to intrinsic density 1
2 , we find something more practical: stochasticity under the

class of all computable permutations, represented as oblivious selection rules. In fact, this is

the class of non-monotonic oblivious selection rules that must eventually select every position.

The corresponding notion of randomness, that no computable martingale succeeds on the

sequence of bits selected by such a rule, is permutation randomness as defined by Miller and

Nies [19]; intrinsic density 1
2 is thus the natural notion of permutation stochasticity.

As mentioned above, stochasticity is generally taken to require selection of proper sub-

sequences to preserve density 1
2 ; this would seem to be an obstacle to considering intrinsic

density 1
2 as a valid notion of stochasticity. Fortunately, permutation stochasticity in fact

ensures that many proper subsequences are also unbiased, including all computably-sampled
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subsequences. We can be fully precise about this with one more definition in hand, and a

combinatorial lemma to relate it to our previous work.

Definition 3.6.1. Given a total computable injection p and an infinite binary sequence

X(n), we say that the subsequence of X sampled by p is

p−1(S) = {X(p(n))}n∈ω.

Abusing notation as noted in the introduction, we can apply this directly to any set S ⊆ ω.

In set notation, this gives

p−1(S) = {n ∈ ω : p(n) ∈ S}.

However, even though this new method of sampling generalizes our previous method of

considering sets under computable permutations of ω, it has no additional power as far as

density is concerned.

Lemma 3.6.2. Given any total computable injection p, there is a computable permutation

π such that, for any set S, π−1(S) has upper and lower density equal to those of p−1(S).

Proof. Given a total computable injection p, we define a computable permutation π by

assigning values π(j) in increasing order of j. If j is a non-square integer, and p(j) has not

already been assigned to π(i) for some i < j, define π(j) = p(j). Otherwise, define π(j) to

be the least value not assigned to any π(i) with i < j.

The sizes of π([0, n)) ∩ S and p([0, n)) ∩ S differ by at most d
√
ne. Thus, ρn(π−1(S))

differs from ρn(p−1(S)) by less than 2√
n

. Therefore,

lim sup
n→∞

ρn(π−1(S)) = lim sup
n→∞

ρn(p−1(S)),

and

lim inf
n→∞

ρn(π−1(S)) = lim inf
n→∞

ρn(p−1(S)).
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From this minor lemma, we note that in fact, any set with intrinsic density has constant

density not only under all computable permutations of ω, but also under all computable

“samplings” of ω. To be more precise:

Corollary 3.6.3. A set A has intrinsic density d iff ρ(p−1(A)) = d for every total computable

injection p.

Proof. The reverse direction is obvious by definition, since computable permutations of ω

are also total computable injections.

The forward direction is, at this point, also quite straightforward. Fix a total computable

injection p. By Lemma 3.6.2, there is a computable permutation π such that π−1(S) has

the same upper and lower densities as p−1(S) for any set S, and in particular for A. Since

A has intrinsic density d, we know that ρ(π−1(A)) = d, and so that ρ(p−1(A)) = d.

This corollary reveals that intrinsic density 1
2 coincides with another form of stochasticity:

stochasticity under all computable injections, or equivalently the class of all oblivious non-

monotonic selection rules. The corresponding notion of randomness is injection randomness,

also as defined by Miller and Nies [19]. Thus, we see that:

Corollary 3.6.4. Permutation stochasticity and injection stochasticity coincide, and are

both equivalent to intrinsic density 1
2 .

Considering this interpretation of intermediate intrinsic densities (strictly between 0 and

1) as a form of stochasticity, we find that intrinsic density provides an interesting link be-

tween the immunity properties and randomness-theoretic ideas. As discussed above, intrinsic

density 0 is an immunity-type property, and so intrinsic density 1 is a form of co-immunity

(or, as it is called for c.e. sets, simplicity). Thus, intrinsic density illustrates the relations

between immunity, randomness, and simplicity, and provides a continuum of intermediate

concepts, all of which follow in the spirit of stochasticity as established by von Mises. This
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calls our attention to the fact that all of these properties are, in essence, descriptions of

unpredictability: a set is immune if it is sufficiently difficult for a computable enumeration

to stay within the set, co-immune if it is difficult to avoid the set, and stochastic if it is

difficult to achieve any sort of persistent pattern of biased intersection with the set or its

complement.

Of course, all of this relies fundamentally on our use of intrinsic density. Considering

asymptotic density alone, we find no useful connection to computability or randomness. A

set with density 0 need not be immune in any useful sense, as is made clear by considering the

computable set of perfect squares. Taking the complement, we obtain a set with density 1

that is trivial to avoid. Moreover, density 1
2 is a poor notion of randomness, as recognized

by and before von Mises, carrying no real implications for unpredictability; for instance, the

set of even numbers is “stochastic” in this sense, and yet is trivially predictable.
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CHAPTER 4

INTRINSIC ASYMPTOTIC COMPUTATION

4.1 Introduction

Having found promising results by imposing computable invariance on asymptotic density, we

end by returning to the motivating problem with which we began Chapter 3: strengthening

Jockusch and Schupp’s generic-case computability to obtain similar invariance.

In practical terms, the weakness of asymptotic computability was shown by Hamkins and

Miasnikov [8], who demonstrated that, in several reasonable codings, the halting problem is

in fact decidable on a computable set of asymptotic density 1, due to the density of trivially

non-halting programs. This suggests that we should strengthen asymptotic computability,

to avoid rendering the halting problem “decidable” for trivial reasons.

On the other hand, Rybalov [24] has shown that if we insist on convergence on a set

with density exponentially approaching 1 (also known as strong generic-case computability),

then the halting problem is instead undecidable. This in turn points out the fragility of our

definitions, as we can see that certain results may depend on the rate of convergence of a

set’s asymptotic density rather than its density alone.

Furthermore, Corollary 3.1.2 has a somewhat unfortunate consequence for generic-case

computability. For any problem, if there is an algorithm that converges on an infinite set of

inputs, that algorithm becomes a generic-case solution for the problem under some alternate

coding of the input. After all, the domain of the algorithm is necessarily c.e.; there is

therefore some coding of the underlying problem (corresponding to a permutation of ω)

under which the algorithm converges on a set of density 1. In other words, most natural

problems have generic-case computable solutions (as defined by Jockusch and Schupp [12])

under some computable permutation. This gives us another reason to use a stricter notion

of asymptotic computability.

In Section 4.2, we propose four such definitions for each notion of asymptotic compu-
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tation, varying in degree of uniformity. As we then show in Section 4.3, most of these are

strictly weaker than ordinary Turing computability (with only one known equivalent to or-

dinary computability), but even the weakest of our notions does not consider the halting

problem (or, in fact, any nontrivial index set) to be computable.

4.2 Definitions

Returning to the original definition of generic-case complexity for group-theoretic problems,

from Kapovich, Myasnikov, Schupp, and Shpilrain [14], we note that the authors defined a

problem in a finitely generated group to have generic-case complexity C if and only if this

complexity is independent of the choice of generating set. They specifically state that, though

the worst-case complexity for most group-theoretic problems does not depend on one’s choice

of generating set, there is no reason to assume that this should also hold for generic-case

complexity. As this choice directly corresponds to a coding of the input to the generic-case

algorithm, a natural translation would require that our set be generic-case computable under

every computable permutation of ω. Equivalently, by the Myhill Isomorphism Theorem, A

should not be considered generic-case decidable unless all of the 1-equivalent sets are as

well. Fortunately, this coincides with the standard idea that most computability-theoretic

definitions are (or “should be”) invariant under computable permutation.

We will call this new notion intrinsic generic-case computability, as it must be preserved

under computable permutations of ω. Below, we propose four definitions, varying in degree

of uniformity.

Our weakest candidate notion of intrinsic generic-case computability is the direct trans-

lation of the definition by Kapovich, Myasnikov, Schupp, and Shpilrain [14]:

Definition 4.2.1. A set A is (weakly) intrinsically generic-case computable iff π(A) is

generic-case computable for every computable permutation π : ω → ω.

Note that we place no requirements on the relationships between the generic-case de-
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scriptions for each such image π(A); the algorithms may be essentially unrelated.

Insisting on a bare minimum of uniformity, we obtain our next candidate definition:

Definition 4.2.2. A set A is (uniformly) intrinsically generic-case computable iff there is a

uniformly computable family of functions fe such that, if ϕe is a computable permutation,

fe is a generic-case description of ϕe(A); that is, fe has density-1 domain and wherever fe(n)

converges, it converges to (ϕe(A))(n).

On the other hand, allowing our description to require an index may weaken our notion

of uniformity; after all, this means that our description f cannot be given only a black-box

oracle specifying the computable permutation, but actually requires knowledge of how the

permutation can be computed — and in particular may depend on the specific program

provided to compute the permutation.

Requiring the description to work with only an oracle might seem a trivial variation, but

significant differences have been observed in analogous situations; specifically, in computable

model theory, the index-based definition of uniform computable categoricity has been shown

to be strictly weaker (and less natural) than the definition providing only an oracle. [4]

(In general, any oracle-based definition must be at least as strong as the corresponding

index-based definition, since it is well-established that there is a Turing-machine procedure

allowing us to convert an index into an effective oracle.) We therefore include this option in

our list of candidate notions. In this case, we would say that:

Definition 4.2.3. A set A is (oracle) intrinsically generic-case computable iff there is a

Turing functional ΦX such that, for any computable permutation π (represented as a set of

pairs), Φπ is a generic-case description of π(A).

Finally, we might insist on complete uniformity, and require that a single algorithm

provide a description of A on a set that has density 1 under all computable permutations;

in other words, that the algorithm converge on a set of intrinsic density 1.
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Definition 4.2.4. A set A is (strongly) intrinsically generic-case computable iff it has a

description ϕe that converges on a set of intrinsic density 1. (Equivalently, ϕe ◦ π−1 is a

generic-case description of π(A) for all computable permutations π.)

More work will be required to distinguish these definitions of intrinsic generic-case com-

putability, and some of them may prove to be equivalent. At this point, though, there are

no reasons to presume any equivalences. The author personally expects that the uniform

and strong definitions of intrinsic generic-case computability will be the most useful of these

four.

Of course, similar notions exist for every form of intrinsic asymptotic computability. We

will use these in the next section without further comment, as the definitions are analogous.

4.3 Properties of intrinsic asymptotic computation

Since r-maximal sets are c.e. and have intrinsic density 1, any r-maximal set is in fact strongly

intrinsically generic-case computable. This provides a convenient demonstration that even

this strongest definition is weaker than ordinary computability.

Of course, similar definitions exist for every form of intrinsic asymptotic computability;

however, our observation above on r-maximal sets is only relevant to intrinsic generic-case

and dense computability. For coarse computability, we note that any infinite set with intrinsic

density 0 is strongly intrinsically coarsely computable, so again we see that intrinsic coarse

computation is weaker than ordinary computation. However, strong intrinsic effective dense

computation would require the description to converge correctly on a computable set of

intrinsic density 1; as the only such sets are co-finite, we see that this definition collapses to

ordinary computability. We leave the question of weak intrinsic effective dense computation

to a later paper.

On the other hand, even our weakest definition has a certain demonstrable strength. A

set S ⊆ ω is said to be an index set if S(e) = S(e′) for all e, e′ ∈ ω where e and e′ are indices
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for equivalent Turing machines. Rice’s Theorem [23] states that the only computable index

sets are ∅ and ω. We can easily extend this to intrinsic dense computability, showing that no

non-trivial index set can be weakly intrinsically densely computable. Therefore, the halting

problem is not intrinsically densely computable under any of these definitions.

Theorem 4.3.1. Suppose S ⊆ ω is an index set (i.e., S(e) = S(e′) for all e, e′ such that

ϕe = ϕe′). π(S) is densely computable for all computable permutations π iff S is computable,

and thus iff S = ∅ or S = ω.

Sketch of Proof. The reverse implication is obvious; we will only consider the forward impli-

cation.

By the Padding Lemma for Turing machines [25], for any e, we can computably enumerate

a set
{
xe,0, xe,1, . . .

}
such that ϕe = ϕxe,i for all i. We can therefore build a computable

injection i : ω → ω so that for all n, if n ∈ [e!, (e+ 1)!), then i(n) = xe,k, where k is the

least j such that i(m) 6= xe,j for all m < n.

Suppose i−1(S) is densely computable, with dense description Ψ. There must be some

E such that, for all e > E, Ψ(n) converges to i−1(S)(n) for more than three-quarters of all

n ∈ [e!, (e+ 1)!); otherwise, Ψ could not converge to i−1(S) on a set of density 1. We can

then determine whether e ∈ S for all e > E; we simply wait until Ψ(n) converges for at least

three-quarters of n ∈ [e!, (e+ 1)!) and then take the majority vote. Since this allows us to

compute S(e) for all but finitely many indices, S must be computable; therefore, by Rice’s

Theorem, S = ∅ or S = ω.

Corollary 4.3.2. The halting problem is not (weakly) intrinsically densely computable.

Proof. The halting problem is 1-equivalent to a non-computable index set (e.g., the set of all

programs that halt for at least one input, {e | (∃x)[ϕe(x)↓]}). By the Myhill Isomorphism

Theorem [20], this means that its image under some computable permutation is a non-

computable index set. Composing this with the permutation from the proof of Theorem 4.3.1,

we obtain a computable permutation under which the image of the halting problem is not
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densely computable. Thus, the halting problem is not even weakly intrinsically densely

computable.
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