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THE UNIFORM CONTENT OF PARTIAL AND LINEAR

ORDERS

ERIC P. ASTOR, DAMIR D. DZHAFAROV, REED SOLOMON, AND JACOB SUGGS

Abstract. The principle ADS asserts that every linear order on ω has an
infinite ascending or descending sequence. This has been studied extensively
in the reverse mathematics literature, beginning with the work of Hirschfeldt
and Shore [16]. We introduce the principle ADC, which asserts that every such
linear order has an infinite ascending or descending chain. The two are easily
seen to be equivalent over the base system RCA0 of second order arithmetic;
they are even computably equivalent. However, we prove that ADC is strictly
weaker than ADS under Weihrauch (uniform) reducibility. In fact, we show
that even the principle SADS, which is the restriction of ADS to linear orders
of type ω + ω∗, is not Weihrauch reducible to ADC. In this connection, we
define a more natural stable form of ADS that we call General-SADS, which
is the restriction of ADS to linear orders of type k + ω, ω + ω∗, or ω + k,
where k is a finite number. We define General-SADC analogously. We prove
that General-SADC is not Weihrauch reducible to SADS, and so in particular,
each of SADS and SADC is strictly weaker under Weihrauch reducibility than
its general version. Finally, we turn to the principle CAC, which asserts that
every partial order on ω has an infinite chain or antichain. This has two pre-
viously studied stable variants, SCAC and WSCAC, which were introduced by
Hirschfeldt and Jockusch [16], and by Jockusch, Kastermans, Lempp, Lerman,
and Solomon [18], respectively, and which are known to be equivalent over
RCA0. Here, we show that SCAC is strictly weaker than WSCAC under even
computable reducibility.

1. Introduction

In the quest to understand the logic strength of Ramsey’s theorem for pairs, initi-
ated by Jockusch [17], a myriad of related combinatorial principles were introduced
and studied in their own right, giving rise to what is now called the reverse mathe-
matics zoo [9]. Two early examples, introduced by Hirschfeldt and Shore [16], were
the ascending/descending sequence principle (ADS) and the chain/antichain prin-
ciple (CAC). ADS asserts that every linear order (on ω) has an infinite ascending or
descending sequence, while CAC asserts that every partial order (on ω) has an infi-
nite chain or antichain. (See Section 2 for formal definitions.) While these principles
have thus far been analyzed from the point of view of reverse mathematics, in this
article we study them using the more nuanced framework of Weihrauch reducibil-
ity, which we describe below. We refer the reader to Soare [23] and Simpson [22]
for general background on computability and reverse mathematics, respectively,
and to Hirschfeldt [14, Sections 6 and 9] for a comprehensive survey of reverse
mathematical results about Ramsey’s theorem and other combinatorial problems.
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As is well-known, there is a natural interplay between computability theory
and reverse mathematics, with each of the benchmark subsystems of second-order
arithmetic broadly corresponding to a particular level of computability-theoretic
complexity (see, e.g., [16, Section 1] for details). In fact, this connection is deeper.
The majority of principles one considers in reverse mathematics, like Ramsey’s
theorem, have the syntactic form

∀X (Φ(X) → ∃Y Ψ(X,Y )),

where Φ and Ψ are arithmetical predicates. It is common to call such a principle
a problem, and to call each X such that Φ(X) holds an instance of this problem,
and each Y such that Ψ(X,Y ) holds a solution to X . The instances of RTn

k are
thus the colorings c : [ω]n → k, and the solutions to any such c are the infinite
homogeneous sets for this coloring. Over RCA0, an implication between problems
(say Q → P) can in principle make multiple applications of the antecedent (Q),
or split into cases in a non-uniform way; however, in practice, most implications
have a simpler shape. To discuss these, we use the following notions of reduction
between problems:

Definition 1.1. Let P and Q be problems.

(1) P is computably reducible to Q, written P ≤c Q, if every instance X of P

computes an instance X̂ of Q, such that if Ŷ is any solution to X̂ then

there is a solution Y to X computable from X ⊕ Ŷ .
(2) P is strongly computably reducible to Q, written P ≤sc Q, if every instance

X of P computes an instance X̂ of Q, such that if Ŷ is any solution to X̂

then there is a solution Y to X computable from Ŷ .
(3) P is Weihrauch reducible to Q, written P ≤W Q, if there are Turing func-

tionals Φ and ∆ such that if X is any instance of P then ΦX is an instance

of Q, and if Ŷ is any solution to ΦX then ∆X⊕Ŷ is a solution to X .
(4) P is strongly Weihrauch reducible to Q, written P ≤sW Q, if there are

Turing functionals Φ and ∆ such that if X is any instance of P then ΦX

is an instance of Q, and if Ŷ is any solution to ΦX then ∆Ŷ is a solution
to X .

All of these reductions express the idea of taking a problem, P, and computably
(even uniformly computably, in the case of ≤W and ≤sW) transforming it into
another problem, Q, in such a way that being able to solve the latter computably
(uniformly computably) tells us how to solve the former. This is a natural idea,
and indeed, more often than not an implication Q → P over RCA0 (or at least, over
ω-models of RCA0) is a formalization of some such reduction. The strong versions
above may appear more contrived, since it does not seem reasonable to deliberately
bar access to the instance of the problem one is working with. Yet commonly, in a

reduction of the above sort, the “backward” computation from Ŷ to Y turns out
not to reference the original instance. Frequently, it is just the identity.
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Let P ≤ω Q denote that every ω-model of Q is a model of P. It is easy to see
that the following implications hold:

P ≤W Q
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No additional arrows can be added to this diagram (see [15, Section 1]). The notions
of computable reducibility and strong computable reducibility were implicitly used
in many papers on reverse mathematics, but were first isolated and studied for
their own sake by Dzhafarov [8], and also form the basis of the iterated forcing
constructions of Lerman, Solomon, and Towsner [19]. Weihrauch reducibility (also
called uniform reducibility) and strong Weihrauch reducibility were introduced by
Weihrauch [24], under a different formulation than given above, and have been
widely applied in the study of computable analysis. Later, these were independently
rediscovered by Dorais, Dzhafarov, Hirst, Mileti, and Shafer [7], and shown to be
the uniform versions of computable reducibility and strong computable reducibility,
respectively (see [7, Appendix A]).

The investigation of these notions has seen a recent surge of interest, as evi-
denced, e.g., by [2], [8], [10], [11], [12], [13], [15], [20]. (A complete and updated
bibliography is maintained by Brattka [1].) Collectively, they provide a way of
refining the analyses of effective and reverse mathematics, by elucidating subtler
points of similarity and difference between various principles. In this paper, we ap-
ply this analysis to the above-mentioned principles ADS, CAC, and their variants.
Specifically, we examine two natural formulations of the principle ADS, which are
equivalent from the classical viewpoint of reverse mathematics, but which we show
to be different under Weihrauch reducibility. We then look at the so-called stable
version of ADS, first formulated by Hirschfeldt and Shore [16], and discover an
overlooked form of this principle which is again classically equivalent, but different
in the present setting. We conclude by examining two stable versions of CAC, one
formulated by Hirschfeldt and Shore, the other by Jockusch, Kastermans, Lempp,
Lerman, and Solomon [18], and show that, while these are known to be equivalent
over RCA0, they are actually not equivalent under even computable reducibility.

The paper is structured as follows. In Section 2, we formally define the principles
we will be concerned with below, and discuss the basic relationships that hold
between them. In Section 3, we prove our non-equivalence results about ADS and
its stable variants. And in Section 4, we do the same for the two stable versions of
CAC. Our results are expressed in Figure 1, which appears in the next section.

2. Background

Throughout, we reserve ≤ for the natural ordering on ω. All sets are assumed to
be subsets of ω, and all partial and linear orders are assumed to have field ω unless
otherwise specified. As usual, if ≤P is a partial order, we write x <P y if x ≤P y

and x 6= y.

Definition 2.1. Let ≤L be a linear order.
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(1) An ascending sequence for ≤L is a set S ⊆ L such that for all x, y ∈ S, if
x ≤ y then x ≤L y.

(2) A descending sequence for ≤L is a set S ⊆ L such that for all x, y ∈ S, if
x ≤ y then y ≤L x.

(3) An ascending chain for ≤L is a set S ⊆ L such that for every x ∈ S there
are only finitely many y ∈ S with y ≤L x.

(4) A descending chain for ≤L is a set S ⊆ L such that for every x ∈ S there
are only finitely many y ∈ S with x ≤L y.

The principle ADS below was formulated by Hirschfeldt and Shore [16, Sections
2 and 3]. We formulate the analogues principle ADC, which changes the formulation
from sequences to chains.

Ascending/descending sequence principle (ADS) Every linear order has an
infinite ascending or descending sequence.

Ascending/descending chain principle (ADC) Every linear order has an infi-
nite ascending chain or descending chain.

Computably, there is no difference between these two principles, as we now show.
The proof is straightforward, but we go through it carefully to highlight some of
its features.

Proposition 2.2.

(1) ADC ≤sW ADS.
(2) ADS ≤c ADC. In particular, ADS ≡c ADC.

Proof. Clearly, every ascending sequence is an ascending chain, and every descend-
ing sequence is a descending chain. Hence, ADC ≤sW ADS, just via the identity
functionals. This proves part 1. For part 2, fix an instance ≤L of ADS. Let S be
any solution to ≤L as an instance of ADC, say an infinite ascending chain. Then
for every x ∈ S, almost all y ∈ S satisfy x <L y. Since S is infinite, this means
that for each x ∈ S there is a y ∈ S with x <L y, and obviously, such a y can be
found ≤L ⊕S-computably, uniformly in x. Iterating this procedure, ≤L ⊕S can
computably thin S out to an infinite ascending sequence S′ ⊆ S for ≤L. Similarly, if
S is a descending chain, then ≤L ⊕S can computably thin S to an infinite descend-
ing sequence for ≤L. We conclude that ADS ≤c ADC, via the identity functional
in the forward direction, and the appropriate thinning procedure in the backward
direction. �

Note that the reduction of ADS to ADC above is uniform modulo a single bit
of information, namely, whether the ADC-solution S is an ascending chain or a
descending chain. Otherwise, the reduction does not depend on the solution in any
way. Thus, there are actually two fixed procedures such that from any ADC-solution
S, one or the other can be used to compute an ADS-solution. This suggests that
ADS is almost uniformly reducible to ADC. We show that this cannot be improved:
ADS �W ADC. Nonetheless, many of the results from [16] work just as well whether
we are working with sequences or chains, with some notable exceptions that we
explore below.

Given a linear order ≤L, we say x is small (in ≤L), or ≤L-small, if there are
only finitely many y with y <L x, and we say x is large (in ≤L), or ≤L-large, if
there are only finitely many y with x <L y.
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Definition 2.3. A linear order ≤L is stable if every x is either small or large.

Note that every stable linear order has type ω + k, k + ω∗, or ω + ω∗, for some
k ∈ ω, depending as there are only finitely many large elements, only finitely many
small elements, or infinitely many of each kind. Hirschfeldt and Shore [16, Section
2] formulated a version of ADS for orders of type ω + ω∗.

Stable ascending/descending sequence principle (SADS) Every stable linear
order ≤L with infinitely many small and large elements has an infinite ascending
or descending sequence.

We define an analogous version of ADC.

Stable ascending/descending chain principle (SADC) Every stable linear or-
der ≤L with infinitely many small and large elements has an infinite ascending
chain or descending chain.

One would expect “stable versions” of ADS and ADC to be formulated for all stable
linear orders, rather than just those of type ω + ω∗. However, it is easy to see
that every computable linear order of type ω + k or k + ω∗ for some finite k has
a computable solution (a computable infinite ascending or descending sequence,
respectively). Thus, in the traditional framework of reverse mathematics, the re-
striction to orders of type ω + ω∗ is inconsequential. We can expect this not to be
the case under uniform reducibility, and so formulate the following general versions
of SADS and SADC.

Generalized SADS (General-SADS) Every stable linear order ≤L has an infinite
ascending or descending sequence.

Generalized SADC (General-SADC) Every stable linear order ≤L has an infinite
ascending chain or descending chain.

Related to the above principles are the following well-known versions of Ramsey’s
theorem. For a set X , let [X ]2 denote the set of all ordered pairs 〈x, y〉 ∈ X2 with
x < y. For k ≥ 1, a stable k-coloring of pairs is a map c : [ω]2 → k = {0, . . . , k− 1}
with the property that limy c(x, y) exists for each x, which means there is a j < k

such that c(x, y) = j for all sufficiently large y. Here and throughout, we write
c(x, y) in place of c(〈x, y〉). A set H is homogeneous for c if there is a j < k such
that c(x, y) = j for all 〈x, y〉 ∈ [H ]2, in which case we also say H is homogeneous
with color j. A set L is limit homogeneous for c if there is a j < k such that
limy c(x, y) = j for all x ∈ H , in which case we also say L is limit homogeneous
with color j. Note that every infinite homogeneous set is limit homogeneous, with
the same color j.

Stable Ramsey’s theorem for pairs (SRT2) For every k ≥ 1, every stable
k-coloring of pairs has an infinite homogeneous set.

∆0
2 principle (D2) For every k ≥ 1, every stable k-coloring of pairs has an infinite

limit homogeneous set.

The above principles were defined by Cholak, Jockusch, and Slaman [5, Section 7],
and shown to be equivalent over RCA0 by Chong, Lempp, and Yang [6, Theorem
1.4]. It is easy to check that the two are computable equivalent, and obviously,

we even have D2 ≤sW SRT
2. By contrast, Dzhafarov [10, Corollary 3.3] has shown

that SRT2 �W D2.
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Figure 1. Relationships between principles under ≤W. An arrow
from one principle to another indicates that the latter is strongly
Weihrauch reducible to the former.

The following proposition lists the basic relationships between all the above
principles.

Proposition 2.4.

(1) General-SADS ≤sW SRT
2 and General-SADC ≤sW D2.

(2) General-SADS ≤sW ADS and General-SADC ≤sW ADC.
(3) SADS ≤sW General-SADS and SADC ≤sW General-SADC.
(4) SADC ≤sW SADS and General-SADC ≤sW General-SADS.
(5) General-SADS ≤c SADC.

In particular, General-SADC ≡c General-SADS ≡c SADC ≡c SADS.

Proof. For part 1, fix a stable linear order ≤L. Define a coloring c : [ω]2 → 2 as
follows:

c(x, y) =

{
0 if y <L x

1 if x <L y.

for all x < y. By stability of ≤L, it follows that c is a stable coloring. Now it is
easy to see that if H is homogeneous for c, then it is an ascending or descending
sequence for ≤L, and if L is limit homogeneous for c, then it is an ascending or
descending chain for ≤L. Parts 2 and 3 are obvious. Part 4 is proved just like
the first part of Proposition 2.2, while part 5 is proved just like the second part of
Proposition 2.2. �

We can now state our main results about linear orders.

Theorem 2.5. SADS �W ADC.

Theorem 2.6. SADS �W D2.

Theorem 2.7. General-SADC �W SADS.

Notice that, for the purposes of studying the above principles under Weihrauch
reducibility, nothing is changed by considering linear orders on other infinite sets
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than just ω. For if (L,≤L) is a partial order and L is infinite, we can uniformly
L-computably build a bijection f : ω → L, and pass to the isomorphic order
≤L′ on ω defined by x ≤L′ y if and only if f(x) ≤L f(y). Then given an infinite
ascending sequence/chain or descending sequence/chain S for ≤L′ , f(S) will be such
a sequence/chain for (L,≤L). Thus, restricting to orders with field ω is merely a
notational convenience.

We now turn from linear orders to partial orders. Given a partial order ≤P , we
write x |P y if x and y are ≤P -incomparable, i.e., if neither x ≤P y nor y ≤P x

holds. We say x is isolated (in ≤P ), or ≤P -isolated, if almost every y is ≤P -
incomparable with x. Parts 1 and 2 of the following definition, and the subsequent
principles SCAC and WSCAC, are due to Hirschfeldt and Shore [16, Definition 3.2]
and Jockusch, Kastermans, Lempp, Lerman, and Solomon [18, Definitions 1.1 and
2.1], respectively.

Definition 2.8. A partial order ≤P is

(1) stable if either every x is small or isolated, or else every x is large or isolated;
(2) weakly stable if every x is small, isolated, or large.

Stable chain/antichain principle (SCAC) Every stable partial order has an
infinite chain or antichain.

Stable chain/antichain principle (WSCAC) Every weakly stable partial order
has an infinite chain or antichain.

It was shown in [18, Theorem 2.2] that over RCA0, the principles SCAC and
WSCAC are equivalent. However, the proof of the non-trivial direction of this
equivalence, that SCAC → WSCAC, uses the antecedent, SCAC, twice. We show
that this is a necessary feature of the proof.

Theorem 2.9. WSCAC �c SCAC.

It is tempting to ascribe this separation simply to the fact that while SCAC allows
only two kinds of limiting behaviors (either small and isolated, or large and iso-
lated), WSCAC allows three (small, isolated, and large). However, this is a false
intuition, as the core of the proof relies not just on the difference between the
numbers of limiting behaviors, but also in an essential way on their combinatorial
properties. In that sense, this result differs significantly from Patey’s recent result
that, say, RT2

3 �c RT
2
2 ([20], Corollary 3.15). Indeed, WSCAC is computably re-

ducible (even strongly Weihrauch reducible) to RT
2
2 (even SRT

2
2). (See, e.g., [16,

Proposition 3.3].)
We summarize the relationships between the principles mentioned above in Fig-

ure 1. The following corollary of our results shows that no additional relationships
can be added to the diagram.

Corollary 2.10. No additional arrows can be added to Figure 1.

Proof. First, we show that no arrows pointing to SRT
2 or D2 can be added. As

mentioned above, that SRT2 �W D2 is shown in [10, Corollary 3.3]. For the other
possible arrows, it suffices to show that D2 �W ADS and D2 �W WSCAC. These
follow by Corollaries 2.29 and 3.12 in Hirschfeldt and Shore [16]. The former gives
an ω-model of ADS in which SRT

2 (and hence also D2, since the two are computably
equivalent) fails. The latter gives an ω-model of CAC (and hence of WSCAC) in

which SRT
2 fails.
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Next, we show that no arrows pointing to ADS or ADC can be added. Hirschfeldt
and Shore [16, Proposition 2.10] showed that over RCA0, ADS implies the so-called
cohesive principle, COH (see [16, Section 1] for the definition), and it is easy to check
that their proof actually shows that COH ≤sW ADC. On the other hand, Dzhafarov
[8, Corollary 4.5] showed that COH �W SRT

2. Hence, ADC �W SRT
2. That

ADS �W ADC follows by Theorem 2.5. For the other possible arrows, it suffices
to show that ADC �W WSCAC. The desired witness of ADC is any computable
linear order with no low infinite ascending chain or descending chain, which exists
by [16, Proposition 2.11]. By contrast, by [16, Corollary 3.5], there is an ω-model of
SCAC (and hence of WSCAC, since the two are equivalent over ω-models) consisting
entirely of low sets.

Finally, we show that no arrows pointing to any ofWSCAC, SCAC, General-SADS,
General-SADC, or SADS can be added. By Theorem 2.5, SADS �W ADC, and by
Theorem 2.6, SADS �W D2. In particular, SADS �W General-SADC, and no arrow
can be added pointing to SCAC. By Theorem 2.9, we have in particular that
WSCAC �W SCAC, so also no arrow can be added to WSCAC. And by Theorem
2.7, General-SADC �W SADS, which dispenses with the remaining arrow. �

3. Linear orders

In this section, we prove Theorems 2.5, 2.6, and 2.7.

3.1. Preliminaries. We assume familiarity with forcing in arithmetic (see, e.g.,
[21, Chapter 3] for an overview). Throughout, generic (with respect to a fixed
forcing notion) will mean arithmetically generic.

In what follows, let FinLO be the set of all linear orders on initial segments of ω.
For λ ∈ FinLO, let ≤λ denote its ordering relation, and let |λ| denote the largest n
such that ≤λ orders ω ↾n. Thus,

λ = (ω ↾ |λ|, ≤λ).

We code members of FinLO by their canonical indices, so that the map λ 7→ |λ| is
computable. We say a linear order (L,≤L) (on ω or an initial segment of ω) extends
λ if ω ↾ |λ| ⊆ L and for all x, y < |λ|, we have x ≤λ y if and only if x ≤L y. Note,
if µ ∈ FinLO extends λ then |µ| ≥ |λ|.

For a Turing functional ∆ and a set X , we adopt the convention that if ∆X(x) is
run for u steps, the computation only queries the oracle about numbers 〈x, y〉 with
x, y < u. For λ ∈ FinLO, we write ∆λ(x) to mean that the computation is run
for only |λ| steps with λ as an oracle. Thus, if ∆λ(x)↓, then for every µ ∈ FinLO
extending λ, we have that ∆µ(x) ↓= ∆λ(x); similarly, for any linear order ≤L on
ω that extends λ, we have that ∆≤L(x) ↓= ∆λ(x).

Definition 3.1. Let L be the following notion of forcing. A condition is a pair
p = (λp, ap) as follows:

• λp ∈ FinLO;
• ap is a map |λp| → {S,L} × (ω ↾ |λp|+ 1);
• if y ≤λp x and ap(x) = (S, t), then y < t and ap(y) = (S, u) for some u;
• if x ≤λp y and ap(x) = (L, t), then y < t and ap(y) = (L, u) for some u.

A condition q extends p, written q ≤L p, if λq extends λp and aq ⊇ ap.

The idea here is that ap represents an assignment of each x < |λp| to either the
set of small or large elements of a stable linear order being approximated by λp.



THE UNIFORM CONTENT OF PARTIAL AND LINEAR ORDERS 9

Specifically, if ap(x) = (S, t) then for all y < |λp| with y ≥ t we must have x ≤λp y,
while if ap(x) = (L, t) then for all such y we must have y ≤λp x. We say x is p-small
if ap(x) = (S, t) for some t, and p-large if ap(x) = (L, t) for some t.

It is easy to see that any generic filter FP on L gives rise to a linear order of type
ω+ω∗, given by

⋃
p∈FP

λp. We denote this order by G = (ω,≤G), and use this also
as a name for the generic order in the L forcing language.

If p is a condition, we say a linear order (L,≤L) (on ω or an initial segment of
ω) respects p if ≤L extends λp and, for all x < |λp| and all y ∈ L, if ap(x) = (S, t)
and y ≥ t then x ≤L y, and if ap(x) = (L, t) and y ≥ t then y ≤L x. Note that if q
extends p, then λq respects p.

Definition 3.1 ensures that if x < |λ|, then ap(x) = (S, t) or ap(x) = (L, t) for
some t ≤ |λp|. Thus, if ≤L respects p and x < |λp| is p-small, x ≤L y for all y ∈ L

with y ≥ |λp|; similarly, if x < |λ| is p-large, y ≤L x for all y ∈ L with y ≥ |λp|. (In
other words, if ≤L respects p, all elements of L not already in λp will be ≤L-above
all p-small elements of λp and ≤L-below all p-large elements of λp.)

The next lemma establishes that if λ ∈ FinLO respects p, then there is a condi-
tion q ≤L p with λq = λ.

Lemma 3.2. Let p be a condition. If λ ∈ FinLO respects p then there are q0, q1 ≤L

p such that λqi = λ and every z with |λp| ≤ z < |λ| is q0-small and q1-large.

Proof. Fix i ∈ {0, 1}. Define ai : |λ| → {S,L}×(ω ↾ |λ|+1) as follows. For z < |λp|,
define ai(z) = ap(z). For z with |λp| ≤ z < |λ|, define ai(z) = (S, |λ|) if i = 0, and
define ai(z) = (L, |λ|) if i = 1. Now let qi = (λ, ai). We claim this is a condition,
whence it follows that qi ≤L p. It suffices only to verify the last two clauses in
Definition 3.1. First, suppose y ≤λqi x and aqi(x) = (S, t) for some t. We must
show that y < t and y is qi-small. We break into the following cases.

Case 1: x, y < |λp|. In this case, we also have y ≤λp x, since λqi = λ extends λp.
Thus, y < t and y is p-small. By definition of aqi = ai, this also means y is qi-small.

Case 2: x < |λp| and |λp| ≤ y < |λq |. By definition of aqi , we must have ap(x) =
(S, t), so t ≤ |λp| ≤ y. But then we cannot have y ≤λqi x, since λqi respects p.
Thus, this case cannot obtain.

Case 3: y < |λp| and |λp| ≤ x < |λq|. Since x ≥ |λp|, we must have that t = |λ| =
|λqi |, and since |λp| ≤ |λqi |, we have y < t. If y were p-large, then we could not
have y ≤λqi x since λqi respects p, so y must be p-small, and hence also qi-small.

Case 4: |λp| ≤ x, y < |λq|. Again, we must have t = |λqi |, so certainly y < t. Since
x, y ≥ |λqi |, x and y are either both qi-small or both qi-large, assuming i = 0 or
i = 1 respectively. Hence, y must be qi-small.

We can similarly verify that if x ≤λqi y and aqi(x) = (L, t), then y < t and y is
qi-large. This completes the proof. �

Proposition 3.3. If G = (ω,≤G) is the linear order of type ω + ω∗ given by a
generic filter on L, then G has no G-computable infinite ascending or descending
sequence.

Proof. Fix a condition p and a Turing functional ∆, and suppose p forces that ∆G

is total and infinite. We show there is a q ≤L p forcing that ∆G is not an ascending
or descending sequence. Fix λ ∈ FinLO that respects p such that there are numbers
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x, y with |λp| ≤ x < y < |λ| and ∆λ(x) ↓= ∆λ(y) ↓= 1. Let q0, q1 be the extensions
of p given by Lemma 3.2. If x <λ y, let q = q1. Then aq(x) = (L, |λ|), so q forces
that z ≤G x for all z ≥ |λ|. Suppose q has an extension r forcing that ∆G is an
infinite ascending or descending sequence for G. Since r forces that x, y ∈ ∆G and
x <G y, it must consequently force that ∆G is an infinite ascending sequence, as
x < y. But then r must also force that there is a z > |λ| in ∆G with x ≤G z,
which is a contradiction. Hence, there can be no such extension r of q, meaning q

forces that ∆G is not an infinite ascending or descending sequence for G. If instead
y ≤λ x, we let q = q0, and the argument is analogous. �

By contrast, we have the following basic fact about “unbalanced” linear orders,
the proof of which is left to the reader.

Proposition 3.4. Let ≤L be a linear order and X an infinite set.

(1) If ≤L has no infinite ascending chain contained in X, then it has an
≤L ⊕X-computable infinite descending sequence contained in X.

(2) If ≤L has no infinite descending chain contained in X, then it has an
≤L ⊕X-computable infinite ascending sequence contained in X.

(Note that if ≤L has no infinite ascending/descending chain contained in X , then
it also has no infinite ascending/descending sequence contained in X .)

3.2. Proofs of the theorems. In what follows, if F is a finite set and X is a
non-empty set, we write F < X or F ≤ X if maxF < minX or maxF ≤ minX ,
respectively. For n ∈ ω, we write n < X or n ≤ X if {n} < X or {n} ≤ X .

Definition 3.5. Let ≤L be a linear order, and Ψ a functional.

(1) A finite set F is an ascending blob (respectively, descending blob) if there
exist x < y such that x <L y (respectively, y <L x) and Ψ≤L⊕F (x) ↓=
Ψ≤L⊕F (y) ↓= 1. We call 〈x, y〉 the witness for F .

(2) If F0 < F1 < · · · is an infinite sequence of ascending blobs (respectively,
descending blobs), the ascending Seetapun tree (respectively, descending
Seetapun tree) generated by this sequence is the set of all α ∈ ω<ω such that
α(i) ∈ Fi for all i, and there is no ascending blob (respectively, descending
blob) F ⊆ ran(α ↾ |α| − 1).

Note that in either the ascending or descending case, the Seetapun tree is a
finitely branching tree, and if α is a node in it then α(i) < α(i+1) for all i < |α|+1.
Thus, if P is any infinite path through this tree, ran(P ) is infinite. Note also that
if α is a terminal node in an ascending Seetapun tree (respectively, descending
Seetapun tree), then there is an ascending blob (respectively, descending blob)
F ⊆ ran(α). So no infinite path P through this tree has any such blob in its range.

Lemma 3.6. Let ≤L be a linear order, Ψ a functional, and X an infinite set.

(1) Either there is an infinite sequence F0 < F1 < · · · of ascending blobs con-
tained in X, and the ascending Seetapun tree generated by this sequence is
finite, or there is an infinite set Y ⊆ X that contains no ascending blob.

(2) Either there is an infinite sequence F0 < F1 < · · · of descending blobs
contained in X, and the descending Seetapun tree generated by this sequence
is finite, or there is an infinite set Y ⊆ X that contains no descending blob.
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Proof. We prove part 1, the proof of part 2 being symmetric. Suppose it is not the
case that there is an infinite sequence of ascending blobs contained in X such that
the ascending Seetapun tree generated by this sequence is finite. Then there are
two cases to consider. First, suppose there is no infinite sequence F0 < F1 < · · ·
of ascending blobs contained in X . Then for some n, there can be no ascending
blob F ⊆ X with n < minF . Thus, we can let Y = X − n. Second, suppose
there is an infinite sequence F0 < F1 < · · · of ascending blobs, but the ascending
Seetapun tree generated by it is infinite. In this case, choose any path P through
this tree, and let Y = ran(X). Since P (i) ∈ Fi ⊆ X for all i, we have Y ⊆ X , and
by definition, there is no ascending blob contained in Y . �

We can now prove our first main theorem. While we could give a simpler proof
here, more in the style of that of Theorem 2.7 below, the one we give is only slightly
more intricate, and has the advantage of setting up the more involved proof of
Theorem 2.6.

Theorem 2.5. SADS �W ADC.

Proof. Fix functionals Φ and Ψ. We build a linear ordering ≤M of type ω + ω∗

to witness that SADS is not Weihrauch reducible to ADC via these functionals. If
there is any linear order that Φ does not map to a linear order, we can just let
≤M be this order, and then we are done. We thus assume this is not the case. In
particular, it must be forced in L that ΦG is a linear order.

If there is a condition p forcing that ΦG has a G-computable infinite ascending
chain or descending chain S, let G be any generic extension of p. By Proposition 3.3,
G computes no infinite ascending or descending sequence for itself, so in particular,
ΨG⊕S cannot define such a sequence. Thus, in this case, we can let ≤M be ≤G, and
again we are done. For the remainder of the proof, we may consequently assume it
is forced that ΦG is a linear order with no G-computable infinite ascending chain
or descending chain; i.e., that there are no G-computable ADC-solutions to ΦG.

Fix any order ≤L of type ω + ω∗. We consider two cases.

Case 1: there is an infinite sequence F0 < F1 < · · · of ascending blobs (or descend-
ing blobs) contained in ω, and the ascending Seetapun tree (respectively, descending
Seetapun tree) generated by this sequence is finite. Let us consider the ascending
case, the descending case being symmetric. Call the ascending Seetapun tree T , and
say it has height n, meaning n = max{|α| : α ∈ T }. Let U be the set of all strings
β ∈ ω<ω with |β| = n and β(i) ∈ Fi for all i < n. Each β ∈ U extends a terminal
α ∈ T , and so in particular, ran(β) contains some ascending blob Fβ . Choose one
blob Fβ for each β ∈ U , and designate witnesses 〈x, y〉 for each of these, along with
uβ, the maximum use of Ψ≤L⊕Fβ (x) and Ψ≤L⊕Fβ (y); similarly, designate witnesses
〈x, y〉 for each of F0, . . . , Fn−1, along with ui, the maximum use of Ψ≤L⊕Fi(x) and
Ψ≤L⊕Fi(y). Let W be the collection of all these witnesses, and let

m = max({ui : i < n} ∪ {uβ : β ∈ U}) + 1.

If 〈x, y〉 ∈ W then x < y < m and x <L y. Let p be the condition with λp equal
to ≤L restricted to ω ↾m, and ap(z) = (L,m) for all z < m; thus, if 〈x, y〉 ∈ W ,
then x <λp y and x is p-large. (In the descending case, we would have y <L x, and
would instead choose p so that ap(z) = (S,m) for all z < m.)

Let G be any generic extension of p, and let ≤ΦG denote the ordering relation of
ΦG. We claim, and prove below, that either there is an i < n such that Fi extends
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to an infinite ascending chain for ΦG, or there is a β ∈ U such that Fβ extends
to a descending chain for ΦG. Call this sequence S. Since S begins with a blob
(Fi or Fβ) as an initial segment and G agrees with ≤L up to the use of all witnesses,
we have that ΨG⊕S contains x and y for some 〈x, y〉 ∈ W . Since ≤G agrees with ≤
below m, this means that if ΨG⊕S is an infinite ascending or descending sequence
for G, it must be ascending (as it contains two elements in increasing order). Since
x is large in G, this is impossible; therefore, ΨG⊕S cannot define an ADS-solution
for G. We can thus let ≤G be the desired linear order ≤M .

It thus remains to prove the claim. Let β ∈ U be the string such that β(i) is the
≤ΦG-largest element of Fi for each i < n. We consider two subcases.

Subcase a: for some i < n, β(i) is not large in ΦG; that is, the set A = {z :
β(i) ≤ΦG z} is infinite. Then A is an infinite G-computable set. Since (by as-
sumption) ΦG has no infinite G-computable descending chain, by Proposition 3.4,
A must contain an infinite ascending chain S′. As β(i) is the ≤ΦG-largest element
of Fi, we must have that S = Fi ∪ S′ is an ascending chain as well.

Subcase b: otherwise. Let u be the ≤ΦG -smallest element of Fβ . Since u is large
in ΦG and ΦG has infinite field, B = {z : z ≤ΦG β(i)} is an infinite G-computable
set. Since ΦG has no infinite G-computable ascending chain, by Proposition 3.4, B
must contain an infinite descending chain S′. As u is the ≤ΦG-smallest element of
Fβ , we must have that S = Fβ ∪ S′ is a descending chain as well.

Case 2: otherwise. Since there is no infinite sequence F0 < F1 < · · · of ascending
blobs contained in ω such that the ascending Seetapun tree generated by this se-
quence is finite, by part 1 of Lemma 3.6, there is an infinite Y0 ⊆ ω that contains no
ascending blob. And since there is no infinite sequence F0 < F1 < · · · of descend-
ing blobs contained in ω such that the ascending Seetapun tree generated by this
sequence is finite, there is in particular no such sequence of blobs contained in Y0.
So by part 2 of Lemma 3.6, there is an infinite Y1 ⊆ Y0 that contains no descend-
ing blob. Now if S ⊆ Y1 is any infinite ascending chain or descending chain for
Φ≤L such that Ψ≤L⊕S defines a set, then this set can contain at most one element.
Indeed, if not, then some sufficiently long initial segment of S would be either an
ascending or descending blob, which cannot be. Thus, in this case, we simply let
≤M be ≤L.

This completes the proof. �

We turn next to proving Theorem 2.6, that SADS �W D2. The proof is very
similar to that of Theorem 2.5 above, but there are some combinatorial differences.
The additional complexity is not in the actual construction, but rather in the def-
initions. In particular, we need an elaboration on Definition 3.5 and Lemma 3.6.
Given a finite, finitely branching tree S ⊆ ω<ω, we let ht(S) denote the height of
S, so ht(S) = max{|β| : β ∈ S}. We also let ran(S) = {ran(β) : β ∈ S}. If S′ is
another such tree, we write S < S′ if max

⋃
β∈S ran(β) < min

⋃
β∈S′ ran(β).

Definition 3.7. Let ≤L be a linear order, and Ψ a functional.

(1) A finitely branching well-founded tree S ⊆ ω<ω is an ascending tree-blob
(respectively, descending tree-blob) if for each terminal β ∈ S there exists
an ascending blob (respectively, descending blob) F ⊆ ran(β).
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(2) If S0 < S1 < · · · is an infinite sequence of ascending tree-blobs (respectively,
descending tree-blobs), the ascending Seetapun tree (respectively, descend-
ing Seetapun tree) generated by this sequence is the set of all α ∈ ω<ω such
that α(i) ∈ ran(Si) for all i, and there is no ascending blob (respectively,
descending blob) F ⊆ ran(α ↾ |α| − 1).

Note that if F is an ascending blob (respectively, descending blob), then the
set of all initial segments of F is an ascending tree-blob (respectively, descending
tree-blob). Also, if S0 < S1 < · · · is an infinite sequence of ascending tree-blobs
(respectively, descending tree-blobs) and the ascending Seetapun tree (respectively,
descending Seetapun tree) generated by this sequence is finite, then this tree is itself
an ascending Seetapun tree (respectively, descending Seetapun tree).

In either the ascending or descending case, if S0 < S1 < · · · is an infinite
sequence of tree-blobs, and the Seetapun tree generated by this sequence is finite,
say of height n, then any sequence of tree-blobs that begins with S0 < · · · < Sn−1

will generate the same Seetapun tree. Thus, in this case, we say the tree is generated
by the finite sequence S0 < · · · < Sn−1.

Definition 3.8. Fix k ≥ 2. Let ≤L be a linear order, and Ψ a functional. An
ascending Seetapun k-forest (respectively, descending Seetapun k-forest) is a col-
lection {Sj,0 < · · · < Sj,tj−1 : j < k} as follows:

• tk−1 = 1, and for each j < k − 1, tj =
∑

i<tj+1
ht(Sj+1,i);

• for each j < k, Sj,0 < · · · < Sj,tj−1 is a sequence of ascending tree-blobs
(respectively, descending tree-blobs);

• for each j < k−1 and each i, Sj+1,i is the ascending Seetapun tree (respec-
tively, descending Seetapun tree), generated by Sj,t < · · · < Sj,t+ht(Sj+1,i)−1,
where t =

∑
i′<i ht(Sj+1,i′ ).

In other words, S1,0 is the Seetapun tree generated by

S0,0 < · · · < S0,ht(S1,0)−1,

S1,1 is the Seetapun tree generated by

S0,ht(S1,0) < · · · < S0,ht(S1,0)+ht(S1,1)−1,

and so on.
We say a tree-blob is contained in a set X if its range is, and we say a Seetapun

k-forest {Sj,0 < · · · < Sj,tj−1 : j < k} is contained in X if each Sj,i is. We have the
following analogue of Lemma 3.6.

Lemma 3.9. Fix k ≥ 2. Let ≤L be a linear order, Ψ a functional, and X an
infinite set.

(1) Either there is an ascending Seetapun k-forest contained in X, or there is
an infinite set Y ⊆ X that contains no ascending blob.

(2) Either there is a descending Seetapun k-forest contained in X, or there is
an infinite set Y ⊆ X that contains no descending blob.

Proof. We prove part 1. First, if for some n, there is no ascending blob F ⊆ X

with n < minF , we can let Y = X − n. So suppose not. Since, as noted above,
every ascending blob can be regarded as a tree-blob, it follows that there exists
an infinite sequence of ascending tree-blobs contained in X . Next, suppose there
is an infinite such sequence such that the Seetapun tree generated by it is infinite.
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Then we can let Y be the range of any infinite path through this tree, and argue
as in the second case of Lemma 3.6. So suppose also that this is not the case.
We now construct a Seetapun k-forest contained in X inductively, as follows. Let
S0,0 < S0,1 < · · · be any infinite sequence of ascending tree-blobs contained in X .
Having built, for some j < k−1, an infinite sequence Sj,0 < Sj,1 < · · · of tree-blobs
in X , we define Sj+1,0 < Sj+1,1 < · · · . Suppose Sj+1,i′ has been defined for all
i′ < i, and let t be least such that

⋃
i′<i ran(Sj+1,i′ ) < min ran(Sj,t). (If i = 0, set

t = 0.) As Sj,t < Sj,t+1 < · · · is itself an infinite sequence of tree-blobs contained
in X , the ascending Seetapun tree generated by it must, by assumption, be finite,
and we le this be Sj+1,i. Once the sequence Sk−1,0 < Sk−1,1 < · · · is built, we
define tk−1 = 1, and for each j < k − 1, tj =

∑
i<tj+1

ht(Sj+1,i). It is easy to see

that {Sj,0 < · · · < Sj,tj−1 : j < k} is indeed a Seetapun k-forest, as desired. The
proof of part 2 is analogous. �

Our final lemma for proving Theorem 2.6 will allow us to build limit homogeneous
sets for stable colorings. It appears, along with a proof, as Lemma 2.6 in [10].

Lemma 3.10. Fix k ≥ 2. Let ≤L be a linear order, Ψ a functional, and {Sj,0 <

· · · < Sj,tj−1 : j < k} an ascending or descending Seetapun k-forest. If c : [ω]2 → k

is a stable coloring, then there is a j < k and an i < tj such that for some terminal
β ∈ Sj,i, limy c(x, y) = j for all x ∈ ran(β).

We now give the proof of the theorem.

Theorem 2.6 SADS �W D2.

Proof. Fix Φ and Ψ. We may assume that for some k, it is forced that ΦG is a
stable coloring [ω]2 → k with no G-computable infinite limit homogeneous set. By
deleting colors from {0, . . . , k− 1} if necessary and renaming the ones that remain,
we may further assume that it is forced that for each j < k, there are infinitely
many x with limy Φ

G(x, y) = j. If it were the case that k = 1, then almost all
x would have the same limit under ΦG, so some co-initial segment of ω would be
limit homogeneous for ΦG, which cannot be by assumption. Thus, k ≥ 2.

Fix any order ≤L of type ω + ω∗. We consider two cases.

Case 1: there is an ascending Seetapun k-forest (or descending Seetapun k-forest).
Consider the ascending case, since the descending case is symmetric, and say the
forest is {Sj,0 < · · · < Sj,tj−1 : j < k}. For each j < k, each i < tj , and
each terminal β ∈ Sj,i, there is then an ascending blob Fβ ⊆ ran(β). Designate
witnesses 〈x, y〉 for each such Fβ , along with uβ , the maximum use of Ψ≤L⊕Fβ (x)
and Ψ≤L⊕Fβ (y). Let W be the collection of all these witnesses, and let m be the
maximum of all the uses uβ. For each 〈x, y〉 ∈ W , let p be the condition with λp

equal to ≤L restricted to ω ↾m, and ap(z) = (L,m) for all z < m. Now let G

be any generic extension of p. By Lemma 3.10, there is a j < k and an i < tj
such that for some terminal β ∈ Sj,i, limy Φ

G(x, y) = j for all x ∈ ran(β). In
particular, Fβ is limit homogeneous for ΦG, and by assumption, there are infinitely
many elements that have the same limit under ΦG as the elements of Fβ . Thus, Fβ

can be extended to an infinite limit homogeneous set I for ΦG, with x > m for all
x ∈ I − Fβ . Now as in the proof of Theorem 2.5, we conclude that ΦG⊕I cannot
define an ADS-solution for G, using the witnesses x and y for the fixed ascending
blob Fβ and the fact that x is large in G.
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Case 2: otherwise. By part 1 of Lemma 3.9, there is an infinite Y0 ⊆ ω that
contains no ascending blob, and by part 2 of the same lemma, there is an infinite
Y1 ⊆ Y0 that contains no descending blob. As in the proof of Theorem 2.5, if I ⊆ Y1

is any infinite limit homogeneous set for Φ≤L such that Ψ≤L⊕I defines a set, then
this set cannot be infinite. We thus let ≤M be ≤L. �

We conclude by proving Theorem 2.7.

Theorem 2.7. General-SADC �W SADS.

Proof. Fix functionals Φ and Ψ. We build a stable linear ordering ≤M to wit-
ness that General-SADC is not Weihrauch reducible to SADS via these functionals.
Analogously to Theorem 2.5, we may assume Φ takes every stable linear order to a
linear order of type ω + ω∗.

Case 1: there is a condition p and an n ∈ ω, for which there is no q ≤ p and no
finite F > n such that q forces that F is ascending under ≤ΦG and there is an x > n

with ΨG⊕F (x) ↓= 1. In this case, let G be any generic extension of p. Since ΦG

has order type ω + ω∗, it must have an infinite ascending sequence S > n. Then
ΨG⊕S cannot define a non-empty, let alone an infinite, set.

Case 2: there is a condition p and a finite set F with the following properties:

• p forces that F is ascending under ≤ΦG and the ≤ΦG-largest element of F
is small in ≤ΦG ;

• there is an x such that ΨG⊕F (x) ↓= 1.

By extending p if necessary, we may assume that p decides whether x is small or
large in ≤G. If p forces that x is small, let ≤M be any linear order of type of k+ω∗

that respects p. Then x must also be small in ≤M . Moreover, even though M is
not generic, p forces that the ≤ΦG-largest element, u, of F is small in ≤ΦG , and u

must also be small in Φ≤M . (Indeed, p forces that there is a z such that u <ΦG y

for all y > z. Hence, there is a z such that for every y > z and every q extending p,
there is an r extending q forcing that x <ΦG y, meaning that Φλr

(x, y) ↓= 1. Now
if there were a y > z such that y <ΦM x then we could take an initial segment λ of
≤M extending λp such that Φλ(x, y) ↓= 1. By Lemma 3.2, we could then choose a
q ≤ p with λq = λ, and for this q no r as above could exist, a contradiction.) Thus,
F is extendible to an infinite ascending sequence S for Φ≤M , and Ψ≤M⊕S(x) ↓= 1.
But since ≤M has order type k + ω∗, it has no infinite ascending chain, and x

cannot be part of any infinite descending chain. Hence, Ψ≤M⊕S cannot define a
General-SADC-solution for ≤M . If p instead forces that x is large in ≤G, we instead
let ≤M be any linear order of type of ω + k that respects p, and argue similarly.

Case 3: otherwise. Let ≤G be any generic linear order of type ω+ω∗. The failure
of Case 1 is a density fact. Since G is generic, we can G-computably find a sequence
of finite ≤ΦG -ascending sets F0 < F1 < · · · and numbers x0 < x1 < · · · such that
ΨG⊕F (x) ↓= 1. Since Case 2 does not hold, the ≤ΦG -largest element of each Fi

must be large in ≤ΦG . Thus, we can G-computably pick out an increasing sequence
y0 < y1 < · · · such that y0 >ΦG y1 >ΦG · · · (namely, y0 is the ≤ΦG-largest element
of F0, and given yi, which is the ≤ΦG-largest element of Fj , we search for the
least k > j such that the ≤ΦG-largest element y of Fk satisfies y <ΦG yi, and we
set yi+1 = y). Thus, the yi form a G-computable infinite descending sequence S

in ≤ΦG . By Proposition 3.3, G has no G-computable infinite ascending chain or
descending chain, so in particular, ΨG⊕S cannot define such a sequence. �
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4. Partial orders

We now turn to our final result, Theorem 2.9.

4.1. Preliminaries. We begin with a number of definitions that largely parallel
those of Section 3.1 above. Let FinPO be the set of all partial orders on initial
segments of ω. For π ∈ FinPO, let ≤π denote its ordering relation, and let |π|
denote the largest n such that for all x, y < n, π either orders x and y or declares
them incomparable. We say a partial order (P,≤P ) extends π if ω ↾ |π| ⊆ P and for
all x, y < |π|, we have x ≤π y if and only if x ≤P y. If ρ ∈ FinPO extends π then
|ρ| ≥ |π|. We adopt the same use conventions for computations from members of
FinPO as we did for computations from members of FinLO.

Definition 4.1. Let P be the following notion of forcing. A condition is a pair
p = (πp, ap) as follows:

• πp ∈ FinPO;
• ap is a map |πp| → {S,L, I} × (ω ↾ |πp|+ 1);
• if y ≤πp x and ap(x) = (S, t), then y < t and ap(y) = (S, u) for some u;
• if x ≤πp y and ap(x) = (L, t), then y < t and ap(y) = (L, u) for some u;
• if x ≤πp y or y ≤πp x and ap(x) = (I, t), then y < t.

A condition q extends p, written q ≤P p, if πq extends πp and aq ⊇ ap.

We define x being p-small and p-large as for linear orders (and collectively call
such elements p-non-isolated), and say x is p-isolated if ap(x) = (I, t) for some t.
Obviously, any generic filter on P gives rise to a weakly stable partial order, which
we denote by G = (ω,≤G). Going forward, we will refer to conditions in P explicitly
as P-conditions, to avoid confusion with the notion M that we define below.

If p is a P-condition, we say a partial order (P,≤P ) (on ω or an initial segment of
ω) respects p if ≤P extends πp and, for all x < |πp| and all y ∈ P , if ap(x) = (S, t)
and y ≥ t then x ≤P y, if ap(x) = (L, t) and y ≥ t then y ≤P x, and if ap(x) = (I, t)
and y ≥ t then x |P y.

We have the following analogues of Lemma 3.2, Proposition 3.3, and Proposition
3.4 in the setting of partial orders.

Lemma 4.2. Let p be a P-condition, and suppose π ∈ FinPO respects p.

(1) There are q0, q1, q2 ≤P p such that πqi = π and every z with |πp| ≤ z < |π|
is q0-small, q1-isolated, and q2-large.

(2) If |πp| ≤ x, y < |π| and x <π y, there are r0, r1 ≤P p such that πri = π, x
is r0-small and r1-isolated, and y is r0-isolated and r1-large.

(3) If |πp| ≤ x, y < |π| and x and y are ≤π-incomparable, there are s0, s1 ≤P p

such that πsi = π, x is s0-small and s1-isolated, and y is s0-isolated and
s1-large.

Proof. Part 1 is proved just like Lemma 3.2. For part 2, fix i ∈ {0, 1}. Define
ai : |π| → {S,L, I} × (ω ↾ |π|+ 1) as follows. For all z < |π|, let ai(z) = ap(z), and
for all z with |πp| ≤ z < |π|, let

ai(z) =

{
(S, |π|) if z �π y,

(I, |π|) if z ≥π y,
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if i = 0, and

ai(z) =

{
(I, |π|) if z �π y,

(L, |π|) if z ≥π y,

if i = 1. Let ri = (π, ai). The verification that this is a P-condition is now just as
in Lemma 3.2. Part 3 is proved analogously. �

Proposition 4.3. If G = (ω,≤G) is the weakly stable partial order given by a
generic filter on P, then G has no G-computable infinite chain or antichain.

Proof. Just like Proposition 3.3. �

Proposition 4.4. Let ≤P be a partial order and X an infinite set.

(1) If ≤P has no infinite chain contained in X, then it has an ≤P ⊕X-computable
infinite antichain contained in X.

(2) If ≤P has no infinite antichain contained in X, then it has an ≤P ⊕X-
computable infinite chain contained in X.

Proof. Just like Proposition 3.4. �

We now define an embellishment of P that will allow us to build chains and
antichains for stable partial orders computable from G.

Definition 4.5. Let M be the following notion of forcing. A condition is a sequence
M consisting of a P-condition pM , a finite collection RM of Turing functionals, and
for each Φ ∈ RM , a triple (CM,Φ, AM,Φ, IM,Φ) as follows:

• pM forces that ΦG is a stable partial order with no G-computable infinite
chain or antichain;

• CM,Φ is a finite set, and pM forces that CM,Φ is a chain in ΦG;
• AM,Φ is a finite set, and pM forces that AM,Φ is an antichain in ΦG;
• IM,Φ is a computable infinite set;
• CM,Φ < IM,Φ, and pM forces that all x ∈ CM,Φ are comparable under ≤ΦG

with all y ≥ IM,Φ;
• AM,Φ < IM,Φ, and pM forces that all x ∈ AM,Φ are incomparable under
≤ΦG with all y ≥ IM,Φ;

A condition N extends M , written N ≤M M , if pN ≤P pM , RN ⊇ RM , and for
each Φ ∈ RM , CM,Φ ⊆ CN,Φ ⊆ CM,Φ ∪ IM,Φ, AM,Φ ⊆ AN,Φ ⊆ AM,Φ ∪ IM,Φ, and
IN,Φ ⊆ IM,Φ.

Thus, in an M-condition M with Φ ∈ RM , each of (CM,Φ, IΦ) and (AM,Φ, IΦ) is
just a Mathias condition. (See, e.g., [3] and [4] for background on Mathias forcing
in computability theory.) A generic filter FM on M thus produces a weakly stable

partial orderG =
⋃

M∈FM
πpM

which is generic for P, a collection RG =
⋃

M∈FM
RM

of Turing functionals such that ΦG is stable partial order with no G-computable
infinite chain or antichain, and for each Φ ∈ RG, a chain CG,Φ =

⋃
M∈FM

CM,Φ

and antichain AG,Φ =
⋃

M∈FM
AM,Φ. For the remainder of this section, let FM be

fixed, and let the above generic objects be taken with respect to it. We also use G,
RG, AG, and CG as names for these objects in the M forcing language.
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4.2. Proof of the theorem. The proof will follow by the following sequence of
lemmas. Note that if p is a P-condition forcing that every element of a finite set
F is ≤ΦG-non-isolated or ≤ΦG -isolated, then there is an m such that p forces that
every x ∈ F is ≤ΦG-comparable with every y ≥ m or ≤ΦG -incomparable with every
such y. In what follows, we denote the least such m by mp,F .

Lemma 4.6. For each Turing functional Φ, if ΦG is a stable coloring with no
G-computable infinite chain or antichain, then Φ ∈ RG.

Proof. Let M be any M-condition such that pM forces that ΦG is a stable partial
order with no G-computable infinite chain or antichain. We define an N ≤M M

with Φ ∈ RN , which suffices, by genericity. If Φ ∈ RM , let N = M . Otherwise, let
RN = RM ∪{Φ}, CN,Φ = AN,Φ = ∅, and IN,Φ = ω, and let the rest of the N agree
with M . �

Lemma 4.7. For each Φ ∈ RG, each of CG,Φ and AG,Φ is infinite.

Proof. Let M be any M-condition with Φ ∈ RM . We show there is an N ≤M M

with |CN,Φ| = |CM,Φ| + 1 and |AN,Φ| = |AM,Φ| + 1. If, for every y ∈ IM,Φ,
every p ≤P pM forced that y is ≤ΦG-isolated, then IM,Φ would be a computable
infinite set of elements all of which are ≤G-isolated (for the actual generic G),
so ΦG would heve a G-computable infinite antichain contained in IM,Φ. But this
cannot be, since p forces that ΦG has no G-computable infinite antichain. Hence,
there must be an x0 ∈ IM,Φ and a p0 ≤P p forcing that x0 is ≤ΦG-non-isolated.
Similarly, there must be an x1 ∈ IM,Φ and a p1 ≤P p0 forcing that x1 is ≤ΦG -
isolated. Let pN = p1, CN,Φ = CM,Φ ∪ {x0}, and AN,Φ = AM,Φ ∪ {x1}. Let
IN,Φ = {x ∈ IM,Φ : x > mpN ,{x0,x1}}, and let the rest of N agree with M . Now N

is the desired extension of M . �

The next lemma presents the key diagonalization step for our proof.

Lemma 4.8. Fix Φ ∈ RG and Turing functionals Γ and ∆. If each of ΓG⊕CG,Φ

and ∆G⊕AG,Φ

is total and defines a chain or antichain for G, then one of the two
defines a finite set.

Proof. Fix a condition M such that Φ ∈ RM , and such that M forces (in M) that

each of ΓG⊕CG,Φ

and ∆G⊕AG,Φ

is total, and for each of the two, either that it defines
a chain for G, or that it defines an antichain. We exhibit an N ≤M M forcing that

either ΓG⊕CG,Φ

or ∆G⊕AG,Φ

defines a finite set, which gives the lemma.
Since Φ ∈ RM , pM forces that ΦG is a stable partial order. Assume that pM

forces that every number is either ≤ΦG-small or ≤ΦG -isolated. The case where pM

forces that every number is either ≤ΦG -large or ≤ΦG-isolated is symmetric. We
consider the following cases.

Case 1: there is a p ≤P pM , an infinite computable subset I of IM,Φ, and an
n ∈ ω such that for all q ≤P p and all finite sets F ⊆ I, if q forces that F is
a chain for ΦG and all its elements are ≤ΦG-small, then there is no x ≥ n with

Γπq⊕(CM,Φ∪F )(x) ↓= 1. In this case, define N as follows. Let pN = p and IN,Φ = I,
and let the rest of N agree with M . Then N ≤M M , and clearly N forces that the

set defined by ΓG⊕CG,Φ

contains no numbers x ≥ n.

Case 2: there is a p ≤P pM , an infinite computable subset I of IM,Φ, and an
n ∈ ω such that for all q ≤P pM and all finite sets F ⊆ I, if q forces that F is an
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antichain for ΦG and all its elements are ≤ΦG -isolated, then there is no x ≥ n with

∆πq⊕(AM,Φ∪F )(x) ↓= 1. Define N analogously to the way we did in Case 1.

Case 3: otherwise. We claim that this case cannot obtain, and to show this, break
into the following subcases.

Subcase a: M forces that ΓG⊕CG,Φ

and ∆G⊕AG,Φ

are both chains for G. Since
Case 1 does not hold, we can fix a q0 ≤P pM , a finite set F0 ⊆ IM,Φ, and a

number x0 ≥ |πpM

| such that q0 forces that F0 is a chain for ΦG all of whose

elements are ≤ΦG -small, and Γπq0⊕(CM,Φ∪F0)(x0) ↓= 1. Now {x ∈ IM,Φ : x ≥
mq0,F0

} is computable, so since Case 2 does not hold, we can fix a q1 ≤P q0, a
finite set F1 ⊆ {x ∈ IM,Φ : x ≥ mq0,F0

}, and a number x1 > x0 such that q1
forces that F1 is an antichain for ΦG all of whose elements are ≤ΦG-isolated, and

∆πq1⊕(AM,Φ∪F1)(x1) ↓= 1. By passing to an extension if necessary, we may assume
|πq1 | > maxF0 ∪ F1.

Since q1 ≤P pM , πq1 respects pM . So by part 1 of Lemma 4.2, we can choose

q ≤P pM with πq = πq1 such that every z with |πpM

| ≤ z < |πq1 | is q-isolated. In
particular, both x0 and x1 are q-isolated. By our use conventions, we have that
Φπq

and Φπq1
agree below |πq1 |, so q forces that the ≤ΦG-largest element of F0 is

≤ΦG-below every element of F1. Let r ≤P q decide, for each element of F0 ∪ F1,
whether it is ≤ΦG-small or ≤ΦG-isolated. Then either r forces that the ≤ΦG-largest
element of F0 is ≤ΦG -small, in which case all elements of F0 are ≤ΦG -small, or that
the ≤ΦG-largest element of F0 is ≤ΦG-isolated, in which case all elements of F1 are
≤ΦG-isolated.

If r forces that the elements of F0 are all ≤ΦG -small, define N as follows. Let
pN = r, CN,Φ = CM,Φ ∪ F0, and AN,Φ = AM,Φ. Choose m larger than mr,F0

and

the use of Γπr⊕(CM,Φ∪F0)(x0), let IN,Φ = {x ∈ IM,Φ : x ≥ m}, and let the rest of

N agree with M . Then N ≤M M , and N forces that the set defined by ΓG⊕CG,Φ

contains x0, and that x0 is ≤G-isolated. But this cannot be, since M forces that

ΓG⊕CG,Φ

defines a chain for G.
If r forces that the elements of F1 are ≤ΦG -isolated, we proceed similarly. Let

pN = r, AN,Φ = AM,Φ ∪ F1, and CN,Φ = CM,Φ. Choose m larger than mr,F1
and

the use of ∆πr⊕(AM,Φ∪F1)(x1), let I
N,Φ = {x ∈ IM,Φ : x ≥ m}, and let the rest of

N agree with M . Again, N ≤M M , and we have a contradiction because N forces

that the set defined by ∆G⊕AG,Φ

contains x1, which is ≤G-isolated.

Subcase b: M forces that ΓG⊕CG,Φ

and ∆G⊕AG,Φ

are both antichains for G. The
argument is analogous to the previous subcase.

Subcase c: M forces that ΓG⊕CG,Φ

is a chain forG and ∆G⊕AG,Φ

an antichain. The
argument is similar to the previous two subcases, but we must take slightly greater

care in defining N . Fix q0 ≤P pM , F0 ⊆ IM,Φ, and x0 ≥ |πpM

| as in Subcase a.
Without loss of generality, |πq0 | > x0, so x0 must be q0-non-isolated since M forces

that ΓG⊕CG,Φ

is a chain for G. Say aq0(x0) = (S, t); the case where x0 is q0-large is
symmetric. By the failure of Case 2, fix a q1 ≤P q0, a finite set F1 ⊆ {x ∈ IM,Φ : x ≥
mq0,F0

}, and a number x1 > max{x0, t} such that q1 forces that F1 is an antichain

for ΦG all of whose elements are ≤ΦG -isolated, and ∆πq1⊕(AM,Φ∪F1)(x1) ↓= 1. In
particular, x0 <πq1 x1. We may assume |πq1 | > maxF0 ∪ F1.
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By part 2 of Lemma 4.2, choose q ≤P pM with πq = πq1 such that x0 is q-isolated
and x1 is q-large. Let r ≤P q decide, for each element of F0∪F1, whether it is ≤ΦG -
small or ≤ΦG-isolated. Now as in Subcase a, either r forces that all elements of
F0 are ≤ΦG-small, or that all elements of F1 are ≤ΦG-isolated. In either case, we
define N as in Subcase a. If r forces that all elements of F0 are ≤ΦG -small, we

obtain a contradiction because N forces that the set defined by ΓG⊕CG,Φ

contains

x0, which ≤G-isolated, even though M forces that ΓG⊕CG,Φ

is a chain for G. And if
r forces that all elements of F1 are ≤ΦG-isolated, we obtain a contradiction because

N forces that the set defined by ∆G⊕AG,Φ

contains x1, which is ≤G-large, even

though M forces that ∆G⊕AG,Φ

is an antichain for G.

Subcase d: M forces that ΓG⊕CG,Φ

is an antichain for G and ∆G⊕A,Φ

a chain. The
argument is analogous to Subcase c, except that when we obtain the P-condition
q1 and the numbers x0 and x1, we will have that x0 and x1 are ≤πq1 -incomparable.
Thus, to obtain q as above we will appeal to part 3 of Lemma 4.2 instead of part
2. �

We are now ready to prove the theorem.

Theorem 2.9. WSCAC �c SCAC.

Proof. Let G = (ω,≤G) be the weakly stable partial order given by FM. Consider
any G-computable stable partial order, say ΦG. If this has a G-computable infinite
chain or antichain, then such a chain or antichain, joined with G, can compute
no infinite chain or antichain for G, by Proposition 4.3. So suppose ΦG has no
G-computable infinite chain or antichain. By Lemma 4.6, Φ ∈ RG, and by Lemma
4.7, each of CG,Φ and AG,Φ is infinite, the former a chain for ΦG and the latter
an antichain. Suppose each of CG,Φ and AG,Φ, joined with G, computes a chain
or antichain for G, say via functionals Γ and ∆, respectively. Then by Lemma 4.8,

one of ΓG⊕CG,Φ

and ∆G⊕AG,Φ

defines a finite set. Thus, one of CG,Φ or AG,Φ, even
joined with G, cannot compute any infinite chain or antichain for G. �
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