# Density and Computability

### Eric Astor

The University of Connecticut eric.astor@uconn.edu

April 2, 2016

# Overview

Asymptotic Density

Intrinsic Density

Preliminaries

Computational Content of Intrinsic Density Computing an ID0 Complexity of ID0 Sets Variants

# Definition

Any set  $S \subseteq \omega$  has *upper density* 

$$\overline{\rho}(S) = \limsup_{n \to \infty} \frac{|S \upharpoonright n|}{n}$$

and lower density

$$\underline{\rho}(S) = \liminf_{n\to\infty} \frac{|S \upharpoonright n|}{n}.$$

If these coincide, S has (asymptotic) density

$$\rho(S) = \lim_{n \to \infty} \frac{|S \upharpoonright n|}{n}.$$

# Virtues

#### Intuitive

- What fraction of  $\omega$  is even?  $\frac{1}{2}$ .
- What fraction of  $\omega$  is divisible by n?  $\frac{1}{n}$ .
- What fraction of  $\omega$  is prime? 0.

► Content/pseudomeasure: like a measure, but finitely additive

Actually, slightly better...

# Virtues

#### Intuitive

- What fraction of  $\omega$  is even?  $\frac{1}{2}$ .
- What fraction of  $\omega$  is divisible by n?  $\frac{1}{n}$ .
- What fraction of  $\omega$  is prime? 0.

► Content/pseudomeasure: like a measure, but finitely additive

Actually, slightly better...

### Theorem (Restricted countable additivity)

Let  $\{S_j\}$  be a countable sequence of pairwise-disjoint subsets of  $\omega$  with density. If  $\lim_{n\to\infty} \overline{\rho}(\bigcup_{j=n}^{\infty} S_j) = 0$ , then  $\rho(\bigcup S_j) = \sum \rho(S_j)$ . [Jockusch and Schupp, 2012]

# The Problem

Theorem (Density of computable sets [Downey, Jockusch, and Schupp, 2013]) For any left- $(\Sigma_2^0, \Pi_2^0)$  pair (a, b) with  $0 \le a \le b \le 1$ , there is an (infinite co-infinite) computable set A with lower density a and upper density b.

# The Problem

# Theorem (Density of computable sets [Downey, Jockusch, and Schupp, 2013])

For any left- $(\Sigma_2^0, \Pi_2^0)$  pair (a, b) with  $0 \le a \le b \le 1$ , there is an (infinite co-infinite) computable set A with lower density a and upper density b.

### Corollary

For any infinite co-infinite computable A and any  $(\Sigma_2^0, \Pi_2^0)$  pair (a, b) with  $0 \le a \le b \le 1$ , there is a computable permutation  $\pi$  such that  $\pi(A)$  has lower density a and upper density b.

A set  $S \subseteq \omega$  has *intrinsic density*  $\rho$  if it has density  $\rho$  under every computable permutation of  $\omega$ ; that is, for every computable permutation  $\pi$ ,

$$\rho(\pi(S)) = \rho(S) = \rho.$$

We define *intrinsic upper* and *lower density* analogously.

A set  $S \subseteq \omega$  has *intrinsic density*  $\rho$  if it has density  $\rho$  under every computable permutation of  $\omega$ ; that is, for every computable permutation  $\pi$ ,

$$\rho(\pi(S)) = \rho(S) = \rho.$$

We define *intrinsic upper* and *lower density* analogously.

More generally, a set S has absolute upper density

$$\overline{oldsymbol{
ho}}(S) = \sup_{\pi} \overline{
ho}(\pi(S))$$

and absolute lower density

$$\underline{\rho}(S) = \inf_{\pi} \underline{\rho}(\pi(S)).$$

# Examples

### Proposition

Every Schnorr random set has intrinsic density  $\frac{1}{2}$ .

# Proof Sketch.

Schnorr randomness is computably invariant, and all Schnorr randoms obey the Law of Large Numbers.

# Examples

### Proposition

Every Schnorr random set has intrinsic density  $\frac{1}{2}$ .

# Proof Sketch.

Schnorr randomness is computably invariant, and all Schnorr randoms obey the Law of Large Numbers.

# Proposition (Jockusch)

Every r-cohesive (or even p-cohesive) set has intrinsic density 0.

### Proof.

Any p-cohesive set is cofinitely contained in one equivalence class mod n; this holds true for all n.

# Sampling

Let  $p : \mathbb{N} \to \mathbb{N}$  be a total injection. If  $\{a_n\}$  is a sequence, we say

$$p^{-1}(\{a_n\}) = \{a_{p(n)}\}$$

is the subsequence sampled by p.

- Preliminaries

# The Sampling Lemma

# Lemma ([Astor, 2015])

If p is a computable injection, there is a computable permutation  $\pi$  such that, for all X,  $\pi^{-1}(X)$  and  $p^{-1}(X)$  have the same upper and lower densities.

#### Construction.

 $\pi(n) = p(n)...$  unless: n is a power of 2, or  $\pi(j) = p(n)$  for some j < n. In that case, let  $\pi(n) = (\mu x)[x \notin \pi([0, n))]$ .

#### - Preliminaries

# A Preliminary Equivalence

### Definition

An *h*-bounded weak trace for f is a sequence of finite sets  $D_{g(n)}$  with  $|D_{g(n)}| \leq h(n)$ , where  $f(n) \in D_{g(n)}$  infinitely often. A is weakly computably traceable if, for some computable h, every  $f \leq_{\mathrm{T}} A$  has an *h*-bdd computable weak trace (i.e.,  $g \leq_{\mathrm{T}} \emptyset$ ).

#### - Preliminaries

# A Preliminary Equivalence

### Definition

An *h*-bounded weak trace for f is a sequence of finite sets  $D_{g(n)}$  with  $|D_{g(n)}| \leq h(n)$ , where  $f(n) \in D_{g(n)}$  infinitely often. A is weakly computably traceable if, for some computable h, every  $f \leq_{\mathrm{T}} A$  has an *h*-bdd computable weak trace (i.e.,  $g \leq_{\mathrm{T}} \emptyset$ ).

Theorem ([Kjos-Hanssen, Merkle, and Stephan, 2011]) *The following are equivalent:* 

- A has either DNC or high degree.
- A is not weakly computably traceable.
- ▶  $\exists f \leq_{\mathrm{T}} A \text{ s.t. if } h \leq_{\mathrm{T}} \emptyset$ ,  $f(n) \neq h(n)$  for all suff. large n.

Density and Computability

Computational Content of Intrinsic Density

└─ Computing an ID0

# Computing an ID0

### Theorem (Astor)

Every degree that is DNC or high computes a set with ID0.

Density and Computability

Computational Content of Intrinsic Density

Computing an ID0

# Computing an ID0

### Theorem (Astor)

Every degree that is DNC or high computes a set with ID0.

#### Lemma

If  $G = \{ \langle n, f(n) \rangle : n \in \mathbb{N} \}$  is the graph of f, and G does not have ID0, then f has a computable weak trace with bound  $h(n) = n^2$ .

└─ Computing an ID0

# Computing an ID0

# Theorem (Astor)

Every degree that is DNC or high computes a set with ID0.

#### Lemma

If  $G = \{ \langle n, f(n) \rangle : n \in \mathbb{N} \}$  is the graph of f, and G does not have ID0, then f has a computable weak trace with bound  $h(n) = n^2$ .

#### Proof.

If **a** is DNC or high, it is not WCT; **a** computes some f that has no computable weak trace with bound  $h(n) = n^2$ . The graph of f has ID0.

└─ Computing an ID0

#### Lemma

If  $G = \{ \langle n, f(n) \rangle : n \in \mathbb{N} \}$  is the graph of f, and G does not have ID0, then f has a computable weak trace with bound  $h(n) = n^2$ .

#### Proof of Lemma.

For some permutation  $\pi \leq_{\mathrm{T}} \emptyset$ ,  $\pi^{-1}(G)$  has upper density  $> \frac{1}{a}$ .

Infinitely often,  $|\pi^{-1}(G)| \le | > \frac{s}{q}$ . That is: i.o.,  $\pi([0, s))$  contains at least  $\frac{s}{q}$  elements of G; this includes  $\langle m, f(m) \rangle$  for some  $m > \frac{s}{q}$ . Therefore: i.o.,  $\langle m, f(m) \rangle \in \pi([0, mq))$ . Let  $D_{g(n)} = \{y : \langle x, y \rangle \in \pi([0, nq))\}$  for n > q.

 $|D_{g(n)}| \leq nq < n^2$ , and  $f(m) \in D_{g(m)}$  infinitely often.

Complexity of ID0 Sets

### Theorem (Astor)

If A has neither DNC nor high degree, then A has absolute upper density 1.

Complexity of ID0 Sets

# Theorem (Astor)

If A has neither DNC nor high degree, then A has absolute upper density 1.

### Corollary

If A has neither DNC nor high degree, then A has absolute lower density 0.

### Proof.

The complement of A has the same degree; apply the theorem.

Complexity of ID0 Sets

# Theorem (Astor)

If A has neither DNC nor high degree, then A has absolute upper density 1.

### Proof of Theorem.

Since A is WCT, for any  $f \leq_{\mathrm{T}} A$ , there is some  $h \leq_{\mathrm{T}} \emptyset$  with f(n) = h(n) i.o.

Let 
$$A = \{a_1 < a_2 < \ldots\}$$
, and take  $f(n) = \langle a_1, a_2, \ldots, a_{n!} \rangle$ .  
Let  $h$  be s.t.  $h(n) = \langle a_1, a_2, \ldots, a_{n!} \rangle$  i.o.

Define g as follows.  
If 
$$(n-1)! \le j < n!$$
, let  $g(j) = h(n)_j$ . Unless...  
If  $g(i) = h(n)_j$  for some  $i < j$ , let  $g(j) = (\mu x)[x \notin g([0,j))]$ .

g is injective. When h(n) = f(n),  $|g([0, n!)) \cap A| \ge n! - (n - 1)!$ . Therefore, i.o.,  $\rho_{n!}(g^{-1}(A)) \ge 1 - \frac{1}{n}$ .

Complexity of ID0 Sets

### Theorem

**a** computes a set with intrinsic density 0 iff **a** is either DNC or high.

- There are arithmetical infinite sets with ID0.
- ► If a set has ID0, all of its infinite subsets have ID0.
- Therefore: the Turing degrees of infinite sets with ID0 are closed upwards. [Jockusch (1970)]

### Corollary

**a** contains a set with intrinsic density 0 iff **a** is either DNC or high.

Complexity of ID0 Sets

### Theorem

**a** contains a set with intrinsic density iff **a** is either DNC or high.

### Theorem

Any set with intrinsic density is Turing-equivalent to a set with ID0.

# A Weaker Variant

What if we ask for the degrees containing a set with intrinsic *lower* density 0?

# A Weaker Variant

Theorem If A is a set, let  $S = \{A \upharpoonright n : n \in \mathbb{N}\}$ . If S does not have ILD0, then A is computable.

# A Weaker Variant

#### Theorem

If A is a set, let  $S = \{A | n : n \in \mathbb{N}\}$ . If S does not have ILD0, then A is computable.

### Proof.

There is a permutation  $\pi \leq_{\mathrm{T}} \emptyset$ , and some  $q \in \mathbb{N}$ , with  $\rho_n(\pi^{-1}(S)) > \frac{1}{q}$  for all sufficiently large n. For some m, if n > m,  $|\pi([0, n)) \cap S| \geq \frac{n}{q}$ .

Start with  $T = 2^m$ . Add  $\sigma$  to T if:

- all prefixes are in T, and
- $\pi([0, 2q|\sigma|))$  contains at least  $|\sigma|$  extensions of  $\sigma$ .
- T has width at most 2q, and A is a path on T.

# A Stronger Variant

Schnorr randoms have ID1/2. WCT sets don't have defined intrinsic density.

Theorem

The Turing degrees of sets with ID1/2 are closed upwards.

# A Stronger Variant

```
Schnorr randoms have ID1/2. WCT sets don't have defined intrinsic density.
```

Theorem The Turing degrees of sets with ID1/2 are closed upwards.

### Proposition

The Turing degrees of sets with ID1/2 include all 1-random or high degrees, and include at most all DNC or high degrees.

# A Stronger Variant

```
Schnorr randoms have ID1/2. WCT sets don't have defined intrinsic density.
```

Theorem The Turing degrees of sets with ID1/2 are closed upwards.

### Proposition

The Turing degrees of sets with ID1/2 include all 1-random or high degrees, and include at most all DNC or high degrees.

### **Open Question**

What is the exact characterization of the ID1/2 degrees?

# References



Trans. Amer. Math. Soc. 363(10), 5465-5480. F. Stephan and Zhang J., preprint.

Weakly represented families in the context of reverse mathematics.



# Questions?