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Density and Computability

Asymptotic Density

Definition

Any set S ⊆ ω has upper density

ρ(S) = lim sup
n→∞

|S �n|
n

and lower density

ρ(S) = lim inf
n→∞

|S �n|
n

.

If these coincide, S has (asymptotic) density

ρ(S) = lim
n→∞

|S �n|
n

.
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Density and Computability

Asymptotic Density

Virtues

I Intuitive
I What fraction of ω is even? 1

2 .
I What fraction of ω is divisible by n? 1

n .
I What fraction of ω is prime? 0.

I Content/pseudomeasure: like a measure, but finitely additive
I Actually, slightly better...

Theorem (Restricted countable additivity)
Let {Sj} be a countable sequence of pairwise-disjoint subsets of ω with
density. If limn→∞ ρ(

⋃∞
j=n Sj) = 0, then ρ(

⋃
Sj) =

∑
ρ(Sj).

[Jockusch and Schupp, 2012]
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Asymptotic Density

The Problem

Theorem (Density of computable sets
[Downey, Jockusch, and Schupp, 2013])

For any left-(Σ0
2,Π

0
2) pair (a, b) with 0 ≤ a ≤ b ≤ 1, there is an

(infinite co-infinite) computable set A with lower density a and
upper density b.

Corollary

For any infinite co-infinite computable A and any (Σ0
2,Π

0
2) pair

(a, b) with 0 ≤ a ≤ b ≤ 1, there is a computable permutation π
such that π(A) has lower density a and upper density b.
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Density and Computability

Intrinsic Density

A set S ⊆ ω has intrinsic density ρ if it has density ρ under every
computable permutation of ω; that is, for every computable
permutation π,

ρ(π(S)) = ρ(S) = ρ.

We define intrinsic upper and lower density analogously.

More generally, a set S has absolute upper density

ρ(S) = sup
π
ρ(π(S))

and absolute lower density

ρ(S) = inf
π
ρ(π(S)).
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Intrinsic Density

Examples

Proposition

Every Schnorr random set has intrinsic density 1
2 .

Proof Sketch.
Schnorr randomness is computably invariant, and all Schnorr
randoms obey the Law of Large Numbers.

Proposition (Jockusch)

Every r-cohesive (or even p-cohesive) set has intrinsic density 0.

Proof.
Any p-cohesive set is cofinitely contained in one equivalence class
mod n; this holds true for all n.
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Density and Computability

Preliminaries

Sampling

Let p : N→ N be a total injection.
If {an} is a sequence, we say

p−1({an}) =
{
ap(n)

}
is the subsequence sampled by p.
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Density and Computability

Preliminaries

The Sampling Lemma

Lemma ([Astor, 2015])

If p is a computable injection, there is a computable permutation π
such that, for all X , π−1(X ) and p−1(X ) have the same upper and
lower densities.

Construction.
π(n) = p(n)... unless:
n is a power of 2, or π(j) = p(n) for some j < n.
In that case, let π(n) = (µx)[x 6∈ π([0, n))].
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Preliminaries

A Preliminary Equivalence

Definition
An h-bounded weak trace for f is a sequence of finite sets Dg(n)

with |Dg(n)| ≤ h(n), where f (n) ∈ Dg(n) infinitely often.
A is weakly computably traceable if, for some computable h, every
f ≤T A has an h-bdd computable weak trace (i.e., g ≤T ∅).

Theorem ([Kjos-Hanssen, Merkle, and Stephan, 2011])

The following are equivalent:

I A has either DNC or high degree.

I A is not weakly computably traceable.

I ∃f ≤T A s.t. if h ≤T ∅, f (n) 6= h(n) for all suff. large n.
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Computational Content of Intrinsic Density

Computing an ID0

Computing an ID0

Theorem (Astor)

Every degree that is DNC or high computes a set with ID0.

Lemma
If G = {〈n, f (n)〉 : n ∈ N} is the graph of f , and G does not have
ID0, then f has a computable weak trace with bound h(n) = n2.

Proof.
If a is DNC or high, it is not WCT; a computes some f that has no
computable weak trace with bound h(n) = n2.
The graph of f has ID0.
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Computational Content of Intrinsic Density

Computing an ID0

Lemma
If G = {〈n, f (n)〉 : n ∈ N} is the graph of f , and G does not have
ID0, then f has a computable weak trace with bound h(n) = n2.

Proof of Lemma.
For some permutation π ≤T ∅, π−1(G ) has upper density > 1

q .

Infinitely often, |π−1(G )�s| > s
q .

That is: i.o., π([0, s)) contains at least s
q elements of G ;

this includes 〈m, f (m)〉 for some m > s
q .

Therefore: i.o., 〈m, f (m)〉 ∈ π([0,mq)).

Let Dg(n) = {y : 〈x , y〉 ∈ π([0, nq))} for n > q.
|Dg(n)| ≤ nq < n2, and f (m) ∈ Dg(m) infinitely often.

12 / 20



Density and Computability

Computational Content of Intrinsic Density

Complexity of ID0 Sets

Theorem (Astor)

If A has neither DNC nor high degree, then A has absolute upper
density 1.

Corollary

If A has neither DNC nor high degree, then A has absolute lower
density 0.

Proof.
The complement of A has the same degree; apply the theorem.
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Density and Computability

Computational Content of Intrinsic Density

Complexity of ID0 Sets

Theorem (Astor)

If A has neither DNC nor high degree, then A has absolute upper
density 1.

Proof of Theorem.
Since A is WCT, for any f ≤T A, there is some h ≤T ∅ with
f (n) = h(n) i.o.

Let A = {a1 < a2 < . . .}, and take f (n) = 〈a1, a2, . . . , an!〉.
Let h be s.t. h(n) = 〈a1, a2, . . . , an!〉 i.o.

Define g as follows.
If (n − 1)! ≤ j < n!, let g(j) = h(n)j . Unless...
If g(i) = h(n)j for some i < j , let g(j) = (µx)[x 6∈ g([0, j))].

g is injective.
When h(n) = f (n), |g([0, n!)) ∩ A| ≥ n!− (n − 1)!.
Therefore, i.o., ρn!(g

−1(A)) ≥ 1− 1
n .
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Computational Content of Intrinsic Density

Complexity of ID0 Sets

Theorem
a computes a set with intrinsic density 0 iff a is either DNC or high.

I There are arithmetical infinite sets with ID0.

I If a set has ID0, all of its infinite subsets have ID0.

I Therefore: the Turing degrees of infinite sets with ID0 are
closed upwards. [Jockusch (1970)]

Corollary

a contains a set with intrinsic density 0 iff a is either DNC or high.
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Computational Content of Intrinsic Density

Complexity of ID0 Sets

Theorem
a contains a set with intrinsic density iff a is either DNC or high.

Theorem
Any set with intrinsic density is Turing-equivalent to a set with ID0.
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Computational Content of Intrinsic Density

Variants

A Weaker Variant

What if we ask for the degrees containing a set with intrinsic lower
density 0?

Theorem
If A is a set, let S = {A�n : n ∈ N}.
If S does not have ILD0, then A is computable.

Proof.
There is a permutation π ≤T ∅, and some q ∈ N, with
ρn(π−1(S)) > 1

q for all sufficiently large n.
For some m, if n > m, |π([0, n)) ∩ S | ≥ n

q .

Start with T = 2m. Add σ to T if:

I all prefixes are in T , and

I π([0, 2q|σ|)) contains at least |σ| extensions of σ.

T has width at most 2q, and A is a path on T .
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Computational Content of Intrinsic Density

Variants

A Stronger Variant

Schnorr randoms have ID1/2.
WCT sets don’t have defined intrinsic density.

Theorem
The Turing degrees of sets with ID1/2 are closed upwards.

Proposition

The Turing degrees of sets with ID1/2 include all 1-random or high
degrees, and include at most all DNC or high degrees.

Open Question

What is the exact characterization of the ID1/2 degrees?
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End Matter
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End Matter

The End

Questions?
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