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Definitions and Relations The Idea

The Idea

A total function f is asymptotically computable if it has a description that
is correct on a set of density 1.
If g is a description of f , we say it is correct where g(n) ↓= f (n). It may
have two types of error:

Omission: g(n) ↑
Commission: g(n) ↓6= f (n)
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Definitions and Relations Definitions

Definitions

g is a partial description of f if it has no errors of commission; that is, g is
a partial function such that if g(n) ↓, then g(n) ↓= f (n).
We say g is a generic description of f if its domain has density 1.
f is generically computable if it has a computable generic description.

g is a coarse description of f if it is asymptotically correct and has no
errors of omission; that is, g is a total function, and g(n) = f (n) on a set
of density 1.
f is coarsely computable if it has a computable coarse description.

g is a dense description of f if it is asymptotically correct; that is, g is a
partial function such that g(n) ↓= f (n) on a set of density 1.

Let g be a total ω t {�}-valued function. g is a strong partial description
of f if g(n) ∈ {f (n),�}. If g−1(�) has density 0, then g is an effective
dense description of f .
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Definitions and Relations Definitions

Wait - what was that last one?

Definition
Let g be a total ω t {�}-valued function. g is a strong partial description
of f if g(n) ∈ {f (n),�}. If g−1(�) has density 0, then g is an effective
dense description of f .
f is ed-computable if there is a computable ed-description of f .

From this, we can obtain

gg (n) =
{

g(n) g(n) ∈ ω,
↑ g(n) = �,

and

gc(n) =
{

g(n) g(n) ∈ ω,
0 g(n) = �.
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Definitions and Relations Relations

Relations
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Theorem ([Jockusch and Schupp, 2012])
There is a set that is coarsely computable, but not generically computable.

Theorem ([Jockusch and Schupp, 2012])
There is a set that is generically computable, but not coarsely computable.
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Definitions and Relations Reducibilities

Reducibilities

None of these notions of relative asymptotic computation are transitive.
(Oracles are full, not asymptotic.)

Switch to enumeration operators! A ≤c B if any coarse description of B
computes a coarse description of A, and so on.

Each of these is transitive - so we get degree structures.

First (computability-inspired) question: are there minimal pairs?
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Definitions and Relations Minimal Pairs

Minimal Pairs

Theorem ([Igusa, 2013])
If X and Y are not generically comparable, then there is a set C generically
computable from both X and Y that is not generically computable.
i.e., no minimal pairs for relative generic computation.

NOTE: It is still open whether generic reducibility has minimal pairs.

Theorem ([Hirschfeldt, Jockusch, Kuyper, and Schupp, to appear])
If X is not coarsely computable and Y is weakly 3-random relative to X,
then X and Y are a minimal pair for relative coarse computation.
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Definitions and Relations Minimal Pairs

Towards Minimal Pairs

One approach - show that upper cones are small.
If {X : X asymptotically computes A} has measure 0, then a sufficiently
random Y will compute nothing that X computes.

It suffices to show that ΦA = {X : ΦX is an asymptotic description of A}
has measure 0 for each Turing functional Φ.

To do this — suppose not.
By Lebesgue density, some ΦA has measure close to 1.
Start computing ΦX (n) for all X ; if a clear majority converge at n, then
they must converge to A(n), so the majority vote gives a correct answer.

But why should this happen at a density-1 set of n’s?
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Voting on the Natural Numbers A Voting Lemma

Technical Lemma

Suppose uncountably many voters (each X ∈ 2ω) vote on countably many
referenda (labeled by n ∈ ω). Let Sn = the class of voters supporting
Proposition n, and let S(X ) be the set of referenda X supports (i.e., X ’s
ballot).

Lemma
If µ({X : ρ(S(X )) = 1}) > q, then ρ({n : µ(Sn) ≥ q}) = 1.

Think of it thia way: if each referendum needs measure-q support to pass,
and more than measure-q voters supported most of the referenda, then
most of the referenda will pass.
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Voting on the Natural Numbers Upper Cones for Asymptotic Computation

Upper Cones have Measure 0

Theorem
If A is not g.c., µ({X : A is generically X-computable} = 0.

Proof.
Suppose AΦ = {X ∈ 2ω : ΦX is a generic description of A} has µ > 0.
By Lebesgue density, we may assume µ(AΦ) > 3

4 .
Say X supports n if ΦX (n) ↓= A(n). Clearly, µ({X : ρ(S(X )) = 1}) > 3

4 .
By the Lemma, ρ({n : µ(Sn) ≥ 3

4}) = 1... so for density-1 many n, there
are at least measure- 3

4 sets X with ΦX (n) = A(n).
Define f (n) by waiting to see ΦX (n) converge on a class of measure at
least 2

3 , then taking the majority-rule value.
f is a computable generic description of A.
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Voting on the Natural Numbers Upper Cones for Asymptotic Computation

Upper Cones have Measure 0

Theorem
If A is not g.c., µ({X : A is generically X-computable} = 0.

Theorem ([Hirschfeldt, Jockusch, Kuyper, and Schupp, to appear])
If A is not c.c., µ({X : A is coarsely X-computable} = 0.

Theorem
If A is not d.c., µ({X : A is densely X-computable} = 0.

Theorem
If A is not e.d.c., µ({X : A is effectively densely X-computable} = 0.
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Voting on the Natural Numbers Minimal Pairs

Minimal Pairs for Dense Computation

Theorem
If Y is not densely computable, and X is weakly 4-random relative to Y ,
then X and Y are a minimal pair for dense computation.

Proof.
Suppose C is densely computable from both X and Y .
Fix {0, 1}-valued dense descriptions ΦX and ΨY .
Let P be a set both low and PA over Y .
P computes a {0, 1}-valued completion of ΨY – a set D.
ΦX is still a dense description of D.
Since P was low over Y , X is still weakly 4-random over P (and D).
But ΦD is a measure-0 Π0,D

4 set; D must be densely computable.
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The End
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