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Definitions and Relations [ENEREIEE]

The Idea

A total function f is asymptotically computable if it has a description that
is correct on a set of density 1.

If g is a description of f, we say it is correct where g(n) |= f(n). It may
have two types of error:

e Omission: g(n) 1
e Commission: g(n) }# f(n)
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Definitions
Definitions

g is a partial description of f if it has no errors of commission; that is, g is
a partial function such that if g(n) |, then g(n) |= f(n).

We say g is a generic description of f if its domain has density 1.

f is generically computable if it has a computable generic description.

g is a coarse description of f if it is asymptotically correct and has no
errors of omission; that is, g is a total function, and g(n) = f(n) on a set
of density 1.

f is coarsely computable if it has a computable coarse description.
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Definitions

g is a partial description of f if it has no errors of commission; that is, g is
a partial function such that if g(n) |, then g(n) |= f(n).

We say g is a generic description of f if its domain has density 1.

f is generically computable if it has a computable generic description.

g is a coarse description of f if it is asymptotically correct and has no
errors of omission; that is, g is a total function, and g(n) = f(n) on a set
of density 1.

f is coarsely computable if it has a computable coarse description.

g is a dense description of f if it is asymptotically correct; that is, g is a
partial function such that g(n) = f(n) on a set of density 1.
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Definitions and Relations Definitions

Definitions

g is a partial description of f if it has no errors of commission; that is, g is
a partial function such that if g(n) |, then g(n) |= f(n).

We say g is a generic description of f if its domain has density 1.

f is generically computable if it has a computable generic description.

g is a coarse description of f if it is asymptotically correct and has no
errors of omission; that is, g is a total function, and g(n) = f(n) on a set
of density 1.

f is coarsely computable if it has a computable coarse description.

g is a dense description of f if it is asymptotically correct; that is, g is a
partial function such that g(n) = f(n) on a set of density 1.

Let g be a total w L {{J}-valued function. g is a strong partial description
of f if g(n) € {f(n),0}. If g=1(0) has density 0, then g is an effective
dense description of f.
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Definitions and Relations Definitions

Wait - what was that last one?

Definition

Let g be a total w L {{J}-valued function. g is a strong partial description
of f if g(n) € {f(n),0}. If g~1(0) has density 0, then g is an effective
dense description of f.

f is ed-computable if there is a computable ed-description of f.

From this, we can obtain

o [a) smew
() {T g(n) =1,

and
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Definitions and Relations Relations

Relations

/\
\/

Theorem ([Jockusch and Schupp, 2012])

There is a set that is coarsely computable, but not generically computable. J
Theorem ([Jockusch and Schupp, 2012])
There is a set that is generically computable, but not coarsely computable. J
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Reducibilities
Reducibilities

None of these notions of relative asymptotic computation are transitive.
(Oracles are full, not asymptotic.)

Switch to enumeration operators! A <. B if any coarse description of B
computes a coarse description of A, and so on.

Each of these is transitive - so we get degree structures.

First (computability-inspired) question: are there minimal pairs?
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Minimal Pairs
Minimal Pairs

Theorem ([lgusa, 2013])

If X and Y are not generically comparable, then there is a set C generically
computable from both X and Y that is not generically computable.
i.e., no minimal pairs for relative generic computation.

NOTE: It is still open whether generic reducibility has minimal pairs.

Theorem ([Hirschfeldt, Jockusch, Kuyper, and Schupp, to appear])

If X is not coarsely computable and Y is weakly 3-random relative to X,
then X and Y are a minimal pair for relative coarse computation.
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Definitions and Relations Minimal Pairs

Towards Minimal Pairs

One approach - show that upper cones are small.
If {X : X asymptotically computes A} has measure 0, then a sufficiently
random Y will compute nothing that X computes.

It suffices to show that ®4 = {X : ®X is an asymptotic description of A}
has measure 0 for each Turing functional .

To do this — suppose not.
By Lebesgue density, some ® 4 has measure close to 1.
Start computing ®X(n) for all X; if a clear majority converge at n, then

they must converge to A(n), so the majority vote gives a correct answer.

But why should this happen at a density-1 set of n's?
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Voting on the Natural Numbers [N/l 9 Ry T3 )

Technical Lemma

Suppose uncountably many voters (each X € 2¢) vote on countably many
referenda (labeled by n € w). Let S, = the class of voters supporting
Proposition n, and let S(X) be the set of referenda X supports (i.e., X's
ballot).

I p({X : p(S(X)) =1}) > q, then p({n: u(Sn) > q}) = 1.

Think of it thia way: if each referendum needs measure-q support to pass,
and more than measure-q voters supported most of the referenda, then
most of the referenda will pass.

Lemma J
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U S0z o Aeyiicie Camp il
Upper Cones have Measure 0

Theorem

If A'is not g.c., u({X : A is generically X-computable} = 0.

Proof.

Suppose Ay = {X € 2 : ®X is a generic description of A} has u > 0.
By Lebesgue density, we may assume p(Ag) > %.

Say X supports n if ®X(n) = A(n). Clearly, u({X : p(S(X)) =1}) > 3.
By the Lemma, p({n: 11(Sn) > 3}) = 1... so for density-1 many n, there
are at least measure—% sets X with ®X(n) = A(n).

Define f(n) by waiting to see ®X(n) converge on a class of measure at
least % then taking the majority-rule value.
f is a computable generic description of A. O
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Voting on the Natural Numbers Upper Cones for Asymptotic Computation

Upper Cones have Measure 0

Theorem

If Ais not g.c., u({X : A is generically X-computable} = 0.

Theorem ([Hirschfeldt, Jockusch, Kuyper, and Schupp, to appear])
If Ais not c.c., u({X : A is coarsely X-computable} = 0.

Theorem
If Ais not d.c., u({X : A is densely X-computable} = 0.

Theorem
If A'is not e.d.c., u({X : A is effectively densely X-computable} = 0.
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Sl
Minimal Pairs for Dense Computation

Theorem

If'Y is not densely computable, and X is weakly 4-random relative to Y,
then X and Y are a minimal pair for dense computation.

Proof.
Suppose C is densely computable from both X and Y.
Fix {0, 1}-valued dense descriptions X and WY

Let P be a set both low and PA over Y.
P computes a {0, 1}-valued completion of WY — a set D.

®X s still a dense description of D.
Since P was low over Y, X is still weakly 4-random over P (and D).
But ®p is a measure-0 I'IZ’D set; D must be densely computable. O
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The End
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