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Robust computation modulo “small” sets

Overview

Motivation: Some hard problems are “usually” easy

Problem: what does “usually” mean?

Defining “small” sets
Candidates
Intrinsic density
ID0 and Immunity

Intrinsic computability
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Robust computation modulo “small” sets

Some hard problems are “usually” easy

Computability Almost Everywhere

I Isn’t computability supposed to study impossible problems?
I We’ve started realizing – for many of these, “almost every”

case is easy.
I Näıve simplex algorithm;

high performance in practice, exponential time in theory.
I Boolean satisfiability:

prototypical NP-complete problem, now routinely solved.
I Word problem for groups:

most instances in many (most?) groups are quickly solved.
I One approach: work modulo a vanishing fraction of cases.
I In complexity: generic complexity

[Kapovich, Myasnikov, Schupp, and Shpilrain, 2003]
I In computability:

I Generic and coarse computability (Jockusch & Schupp)
I Dense and effective dense computability (Astor, Hirschfeldt, &

Jockusch)
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Robust computation modulo “small” sets

Some hard problems are “usually” easy

Current Approaches
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Theorem ([Jockusch and Schupp, 2012])

There is a set that is coarsely computable, but not generically computable.

Theorem ([Jockusch and Schupp, 2012])

There is a set that is generically computable, but not coarsely computable.
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What does “usually” mean?

Asymptotic Density

Any set S ⊆ ω has upper density

ρ(S) = lim sup
n→∞

|S �n|
n

and lower density

ρ(S) = lim inf
n→∞

|S �n|
n

.

If these coincide, S has (asymptotic) density

ρ(S) = lim
n→∞

|S �n|
n

.
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Robust computation modulo “small” sets

What does “usually” mean?

Virtues

I Intuitive
I What fraction of ω is even? 1

2 .
I What fraction of ω is divisible by n? 1

n .
I What fraction of ω is prime? 0.

I Content/pseudomeasure: like a measure, but finitely additive
I Actually, slightly better...

Theorem (Restricted countable additivity)
Let {Sj} be a countable sequence of pairwise-disjoint subsets of ω with
density. If limn→∞ ρ(

⋃∞
j=n Sj) = 0, then ρ(

⋃
Sj) =

∑
ρ(Sj).

[Jockusch and Schupp, 2012]
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Robust computation modulo “small” sets

What does “usually” mean?

Vices

I A density-0 set is “thin”, but usually not immune.
I Powers of 2, primes, etc.

Theorem (Density of computable sets
[Downey, Jockusch, and Schupp, 2013])

For any infinite co-infinite computable A and any (Σ0
2,Π

0
2) pair

(a, b) with 0 ≤ a ≤ b ≤ 1, there is a computable permutation π
such that π(A) has lower density a and upper density b.

Corollary

If A is infinite and not immune, there is a computable permutation
π such that ρ(π(A)) = 1.
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What does “usually” mean?

Vices

I A density-0 set is “thin”, but usually not immune.
I Powers of 2, primes, etc.

Theorem (Density of computable sets
[Downey, Jockusch, and Schupp, 2013])

For any infinite co-infinite computable A and any (Σ0
2,Π

0
2) pair

(a, b) with 0 ≤ a ≤ b ≤ 1, there is a computable permutation π
such that π(A) has lower density a and upper density b.

Corollary

If A is infinite and not bi-immune, there is a computable
permutation π such that π(A) is effectively densely computable.
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Robust computation modulo “small” sets

What does “usually” mean?

One Downside

I Hamkins and Miasnikov: The halting problem is decidable on
a set of asymptotic probability one.

Theorem
The halting problem K = {e : φe(0) ↓} is effectively densely
computable...

for a Turing machine with one-way infinite tape.

I The reason: Most k-state programs either repeat a state or
fall off the tape within k steps.
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Robust computation modulo “small” sets

Defining “small” sets

Candidates

Extreme Options

I Dzhafarov & Igusa: Finite sets are small!
I If finite sets are small: mod-finite and cofinite reducibility

I mod-finite: uniform Turing functional; if the oracle has finitely
many errors, so does the output.

I cofinite: uniform Turing functional; if the oracle has cofinite
domain, so does the output.

I Dzhafarov & Igusa: Alternatively, infinite sets are large!
(so any non-cofinite set is small...)

I Infinite information reducibility
I uniform Turing functional; if the oracle has infinite domain, so

does the output.
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Robust computation modulo “small” sets

Defining “small” sets

Candidates

Analyzing the Problem

I We don’t care about solving all cases in order; we care about
solving the f (n)-th case (f computable).

I We care if f −1(B) is usually computable, not if B is!
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Robust computation modulo “small” sets

Defining “small” sets

Intrinsic density

Definition

A set S ⊆ ω has intrinsic density ρ if its computable preimages all
have density ρ; that is, for every computable injection f ,

ρ(f −1(S)) = ρ(S) = ρ.

We define intrinsic upper and lower density analogously.

More generally, a set S has absolute upper density

ρ(S) = sup
f
ρ(f −1(S))

and absolute lower density

ρ(S) = inf
f
ρ(f −1(S)).
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Defining “small” sets

Intrinsic density

A Note

Theorem (Astor)

For any injection f ≤T ∅, there is a permutation π ≤T ∅ such that
f −1(S) and π(S) have the same upper and lower densities for all S .

I Computable permutations suffice to define intrinsic density.
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Defining “small” sets

Finding Sets with ID0

Finding Sets with ID0

Proposition (Jockusch)

Every r-cohesive set has intrinsic density 0.

Proof: cofinitely contained in one equivalence class mod n, for any n.

Proposition (Astor)

Every infinite set with intrinsic density 0 is immune.

Proof: Non-immune sets have density 1 under some permutation.
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Defining “small” sets

Finding Sets with ID0

The Classical Immunity Hierarchy

Cohesive

{{ ##
q-Cohesive

��

r-Cohesive

��

shh-Immune

��

// sh-Immune

��

hh-Immune

))

fsh-Immune

��

Dense Immune // Hyperimmune

��

Immune
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Defining “small” sets

Finding Sets with ID0

Now with Intrinsic Density 0

Cohesive

zz $$
q-Cohesive

��

��

r-Cohesive

��

��

shh-Immune

��

// sh-Immune

��

hh-Immune

**

fsh-Immune

��

Dense Immune

$$

// Hyperimmune

��

ID0 // ILD0

��

Immune
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Defining “small” sets

Finding Sets with ID0

How Complex are ID0’s?

Theorem (Astor)

The Turing degrees of infinite sets with intrinsic density 0 are
precisely the high or DNC degrees.
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Intrinsic computability

Intrinsic Generic Computability

Candidate definitions:

I Strong: algorithm correct for A when it converges; diverges
only on a set with ID0.

I Oracle uniform: Turing functional Φ such that Φπ is correct
for π(A), but diverges on a set of density 0.

I Uniform: Turing functional Φ such that if φe = π, then Φe is
correct for π(A), but diverges on a set of density 0.

I Weak: π(A) is generically computable for every permutation
π ≤T ∅.
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Intrinsic computability

Theorem (Astor)

There is a permutation π such that, for any index set S , π(S) is
densely computable iff S is computable. Thus, no non-trivial index
set is weakly intrinsically densely computable.

Sketch: Use the Padding Lemma; enumerate equivalent programs for every

index and choose π to concentrate them.

Corollary

However we define intrinsic dense computation, the halting
problem is not i.d.c.
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The End
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Appendix

Classical Immunity Properties

I immune – no c.e. subset

I dense immune – principal function dominates all computable functions

I array – uniform list of disjoint sets

I hyperimmune – avoids an element from each array of finite sets

I fsh-immune – avoids an element from each array of computable sets (all finite)

I sh-immune – avoids an element from each array of comp. sets (comp. union)

I hh-immune – avoids an element from each array of c.e. sets (all finite)

I shh-immune – avoids an element from each array of c.e. sets

I cohesive – infinite intersection with exactly one of A or A for all c.e. A

I r-cohesive – infinite intersection with exactly one of A or A for all computable A

I q-cohesive – finite union of cohesive sets
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