Eric P. Astor

The University of Connecticut eric.astor@uconn.edu

March 4, 2017

Overview

Motivation: Some hard problems are "usually" easy

Problem: what does "usually" mean?

Defining "small" sets Candidates Intrinsic density ID0 and Immunity

Intrinsic computability

Some hard problems are "usually" easy

Computability Almost Everywhere

- Isn't computability supposed to study impossible problems?
- We've started realizing for many of these, "almost every" case is easy.
 - Naïve simplex algorithm; high performance in practice, exponential time in theory.
 - Boolean satisfiability: prototypical NP-complete problem, now routinely solved.
 - Word problem for groups: most instances in many (most?) groups are quickly solved.
- One approach: work modulo a *vanishing fraction* of cases.
- In complexity: generic complexity [Kapovich, Myasnikov, Schupp, and Shpilrain, 2003]
- In computability:
 - Generic and coarse computability (Jockusch & Schupp)
 - Dense and effective dense computability (Astor, Hirschfeldt, & Jockusch)

Some hard problems are "usually" easy

Current Approaches

Theorem ([Jockusch and Schupp, 2012])

There is a set that is coarsely computable, but not generically computable.

Theorem ([Jockusch and Schupp, 2012])

There is a set that is generically computable, but not coarsely computable.

-What does "usually" mean?

Asymptotic Density

Any set $S \subseteq \omega$ has *upper density*

$$\overline{
ho}(S) = \limsup_{n \to \infty} \frac{|S \upharpoonright n|}{n}$$

and lower density

$$\underline{\rho}(S) = \liminf_{n \to \infty} \frac{|S \upharpoonright n|}{n}$$

If these coincide, S has (asymptotic) density

$$\rho(S) = \lim_{n \to \infty} \frac{|S \upharpoonright n|}{n}.$$

└─What does "usually" mean?

Virtues

Intuitive

- What fraction of ω is even? $\frac{1}{2}$.
- What fraction of ω is divisible by n? $\frac{1}{n}$.
- What fraction of ω is prime? 0.

Content/pseudomeasure: like a measure, but finitely additive

Actually, slightly better...

└─What does "usually" mean?

Virtues

Intuitive

- What fraction of ω is even? $\frac{1}{2}$.
- What fraction of ω is divisible by n? $\frac{1}{n}$.
- What fraction of ω is prime? 0.

Content/pseudomeasure: like a measure, but finitely additive

Actually, slightly better...

Theorem (Restricted countable additivity)

Let $\{S_j\}$ be a countable sequence of pairwise-disjoint subsets of ω with density. If $\lim_{n\to\infty} \overline{\rho}(\bigcup_{j=n}^{\infty} S_j) = 0$, then $\rho(\bigcup S_j) = \sum \rho(S_j)$. [Jockusch and Schupp, 2012]

└─What does "usually" mean?

Vices

► A density-0 set is "thin", but usually not immune.

Powers of 2, primes, etc.

└─What does "usually" mean?

Vices

A density-0 set is "thin", but usually not immune.

Powers of 2, primes, etc.

Theorem (Density of computable sets [Downey, Jockusch, and Schupp, 2013])

For any infinite co-infinite computable A and any (Σ_2^0, Π_2^0) pair (a, b) with $0 \le a \le b \le 1$, there is a computable permutation π such that $\pi(A)$ has lower density a and upper density b.

What does "usually" mean?

Vices

A density-0 set is "thin", but usually not immune.

Powers of 2, primes, etc.

Theorem (Density of computable sets [Downey, Jockusch, and Schupp, 2013])

For any infinite co-infinite computable A and any (Σ_2^0, Π_2^0) pair (a, b) with $0 \le a \le b \le 1$, there is a computable permutation π such that $\pi(A)$ has lower density a and upper density b.

Corollary

If A is infinite and not immune, there is a computable permutation π such that $\rho(\pi(A)) = 1$.

What does "usually" mean?

Vices

A density-0 set is "thin", but usually not immune.

Powers of 2, primes, etc.

Theorem (Density of computable sets [Downey, Jockusch, and Schupp, 2013])

For any infinite co-infinite computable A and any (Σ_2^0, Π_2^0) pair (a, b) with $0 \le a \le b \le 1$, there is a computable permutation π such that $\pi(A)$ has lower density a and upper density b.

Corollary

If A is infinite and not bi-immune, there is a computable permutation π such that $\pi(A)$ is effectively densely computable.

└─What does "usually" mean?

One Downside

 Hamkins and Miasnikov: The halting problem is decidable on a set of asymptotic probability one.

Theorem

The halting problem $K = \{e : \phi_e(0) \downarrow\}$ is effectively densely computable...

What does "usually" mean?

One Downside

 Hamkins and Miasnikov: The halting problem is decidable on a set of asymptotic probability one.

Theorem

The halting problem $K = \{e : \phi_e(0) \downarrow\}$ is effectively densely computable... for a Turing machine with one-way infinite tape.

The reason: Most k-state programs either repeat a state or fall off the tape within k steps. └─ Defining "small" sets

└─ Candidates

Extreme Options

- Dzhafarov & Igusa: Finite sets are small!
- If finite sets are small: mod-finite and cofinite reducibility
 - mod-finite: uniform Turing functional; if the oracle has finitely many errors, so does the output.
 - cofinite: uniform Turing functional; if the oracle has cofinite domain, so does the output.

└─ Defining "small" sets

└─ Candidates

Extreme Options

- Dzhafarov & Igusa: Finite sets are small!
- If finite sets are small: mod-finite and cofinite reducibility
 - mod-finite: uniform Turing functional; if the oracle has finitely many errors, so does the output.
 - cofinite: uniform Turing functional; if the oracle has cofinite domain, so does the output.
- Dzhafarov & Igusa: Alternatively, infinite sets are large! (so any non-cofinite set is small...)
- Infinite information reducibility
 - uniform Turing functional; if the oracle has infinite domain, so does the output.

└─ Defining "small" sets

L Candidates

Analyzing the Problem

We don't care about solving all cases in order; we care about solving the f(n)-th case (f computable).

└─ Defining "small" sets

L Candidates

Analyzing the Problem

- We don't care about solving all cases in order; we care about solving the f(n)-th case (f computable).
- We care if $f^{-1}(B)$ is usually computable, not if B is!

└─ Defining "small" sets

Intrinsic density

Definition

A set $S \subseteq \omega$ has *intrinsic density* ρ if its computable preimages all have density ρ ; that is, for every computable injection f,

$$\rho(f^{-1}(S)) = \rho(S) = \rho.$$

We define intrinsic upper and lower density analogously.

Defining "small" sets

Intrinsic density

Definition

A set $S \subseteq \omega$ has *intrinsic density* ρ if its computable preimages all have density ρ ; that is, for every computable injection f,

$$\rho(f^{-1}(S)) = \rho(S) = \rho.$$

We define intrinsic upper and lower density analogously.

More generally, a set *S* has *absolute upper density*

$$\overline{
ho}(S) = \sup_{f} \overline{
ho}(f^{-1}(S))$$

and absolute lower density

$$\underline{\rho}(S) = \inf_{f} \underline{\rho}(f^{-1}(S)).$$

└─ Defining "small" sets

Intrinsic density

A Note

Theorem (Astor)

For any injection $f \leq_T \emptyset$, there is a permutation $\pi \leq_T \emptyset$ such that $f^{-1}(S)$ and $\pi(S)$ have the same upper and lower densities for all S.

Computable permutations suffice to define intrinsic density.

Defining "small" sets

Finding Sets with ID0

Finding Sets with ID0

Proposition (Jockusch)

Every r-cohesive set has intrinsic density 0.

Proof: cofinitely contained in one equivalence class mod n, for any n.

Proposition (Astor)

Every infinite set with intrinsic density 0 is immune.

Proof: Non-immune sets have density 1 under some permutation.

Defining "small" sets

Finding Sets with ID0

The Classical Immunity Hierarchy

Defining "small" sets

Finding Sets with ID0

Now with Intrinsic Density 0

Defining "small" sets

Finding Sets with ID0

How Complex are ID0's?

Theorem (Astor)

The Turing degrees of infinite sets with intrinsic density 0 are precisely the high or DNC degrees.

Intrinsic computability

Intrinsic Generic Computability

Candidate definitions:

- Strong: algorithm correct for A when it converges; diverges only on a set with ID0.
- Oracle uniform: Turing functional Φ such that Φ^π is correct for π(A), but diverges on a set of density 0.
- ► Uniform: Turing functional Φ such that if φ_e = π, then Φ^e is correct for π(A), but diverges on a set of density 0.
- Weak: π(A) is generically computable for every permutation π ≤_T Ø.

Intrinsic computability

Theorem (Astor)

There is a permutation π such that, for any index set S, $\pi(S)$ is densely computable iff S is computable. Thus, no non-trivial index set is weakly intrinsically densely computable.

Sketch: Use the Padding Lemma; enumerate equivalent programs for every index and choose π to concentrate them.

Intrinsic computability

Theorem (Astor)

There is a permutation π such that, for any index set S, $\pi(S)$ is densely computable iff S is computable. Thus, no non-trivial index set is weakly intrinsically densely computable.

Sketch: Use the Padding Lemma; enumerate equivalent programs for every index and choose π to concentrate them.

Corollary

However we define intrinsic dense computation, the halting problem is not i.d.c.

References

E. P. Astor, 2015.

Asymptotic density, immunity, and randomness. *Computability* 4(2).

R. Downey, C. Jockusch, Jr., and P. Schupp, 2013. Asymptotic density and computably enumerable sets *J. Math. Log.* 13(2).

I. Kapovich, A. Myasnikov, P. Schupp, and V. Shpilrain, 2003. Generic-case complexity, decision problems in group theory, and random walks *J. Algebra* 264(2), 665–694.

C. Jockusch, Jr. and P. Schupp, 2012. Generic computability, turing degrees, and asymptotic density *J. Lond. Math. Soc.* 85(2), 472–490.

The End

Appendix

Classical Immunity Properties

- immune no c.e. subset
- dense immune principal function dominates all computable functions
- array uniform list of disjoint sets
- hyperimmune avoids an element from each array of finite sets
- fsh-immune avoids an element from each array of computable sets (all finite)
- sh-immune avoids an element from each array of comp. sets (comp. union)
- hh-immune avoids an element from each array of c.e. sets (all finite)
- shh-immune avoids an element from each array of c.e. sets
- cohesive infinite intersection with exactly one of A or \overline{A} for all c.e. A
- ▶ r-cohesive infinite intersection with exactly one of A or \overline{A} for all computable A
- q-cohesive finite union of cohesive sets