The uniform content of ADS

Eric P. Astor

The University of Connecticut eric.astor@uconn.edu

May 25, 2016

Joint work with: Damir Dzhafarov, Reed Solomon, and Jacob Suggs

Problems and Reducibilities

Results

Details

Π_2^1 Problems

Principles of a particular form:

$$P: \ (orall X)[\Phi(X)
ightarrow (\exists Y)[\Psi(X,Y)]],$$

with arithmetic formulas Φ and Ψ .

We say P is a problem. X satisfying $\Phi(X)$ are P-instances. Y is a P-solution to a P-instance X if $\Psi(X, Y)$.

Examples:

Reductions between Problems

Weihrauch reducibility:

 $P \leq_W Q$ if we can uniformly convert a Q-solver into a P-solver.

Computable reduction:

 $P \leq_{c} Q$ if *P*-instances are computably solvable using a *Q*-solver.

Reductions between Problems

Weihrauch reducibility:

 $P \leq_W Q$ if we can uniformly convert a Q-solver into a P-solver.

Example:

Given a linear order \leq_L , we define a coloring of pairs (x < y);

$$c(x,y) = \begin{cases} 0 & \text{if } y <_L x \\ 1 & \text{if } x <_L y \end{cases}$$

S is homogeneous for c iff S is a monotonic sequence for \leq_L . Thus, ADS $\leq_{sW} RT_2^2$. Results

Known Relations

Results

Fine Structure

Results

Fine Structure

ADS and ADC

Consider a linear order \leq_L ;

an ascending (descending) chain is an infinite set C, each $x \in C$ having only finitely many predecessors (successors) in C.

an ascending sequence is an infinite set S, where: for all $x, y \in S$, we have $x \leq y$ iff $x \leq_L y$.

a *descending sequence* is an infinite set *S*, where: for all $x, y \in S$, we have $x \leq y$ iff $y \leq_L x$.

ADC: Every inf. linear order \leq_L has an infinite monotone chain. ADS: Every inf. linear order \leq_L has an infinite monotone sequence. - Details

ADS vs. ADC

- ADC: Every inf. linear order \leq_L has an infinite monotone chain. ADS: Every inf. linear order \leq_L has an infinite monotone sequence.
- Typically identified, since ADS \equiv_c ADC. ADS-instances are ADC-instances; only the solutions differ, subtly.

Monotonic sequences are chains.

Given a monotonic chain, we can extract a sequence.

- An ADS-instance is an ADC-instance.
- ► We have *two* functionals, and given an ADC-solution to *L*, *one* of them will produce an ADS-solution (a sequence).

This is *almost* uniform — one bit of non-uniform information.

Stable versions

We say x is
$$\leq_O$$
-small if $(\forall^{\infty} y)[x \leq_O y]$,
 \leq_O -large if $(\forall^{\infty} y)[y \leq_O x]$,
 \leq_O -isolated if $(\forall^{\infty} y)[x \perp_O y]$.

An infinite partial order is *weakly stable* if all elements are small, large, or isolated, and *stable* if only one of small or large appears. An infinite linear order is *stable* if all elements are small or large: $\omega + k$, $k + \omega^*$, or $\omega + \omega^*$.

- ► SADS/SADC: ADS/ADC for linear orders of type $\omega + \omega^*$.
- ► GenSADS/GenSADC: ADS/ADS for stable linear orders.

Fine Structure

New uniform results: SADS \leq_W ADC, SADS \leq_W D₂², and GenSADC \leq_W SADS. One more: WSCAC \leq_c SCAC.

Uniform results

New uniform results: SADS \leq_W ADC, SADS \leq_W D₂², ... Kev features of SADS:

- Solutions' types are locally detectable.
- With appropriate forcing, generic instances do not "self-solve".
- Key features of ADC and D_2^2 :
 - Instances that do not "self-solve" have solutions of both types.
 - ► Restrictions of instances (Y \ R, R infinite) are instances; solutions to restrictions still solve the original problem.

Uniform results

New uniform results: SADS \leq_W ADC, SADS \leq_W D₂², ... Key features of SADS:

- Solutions' types are locally detectable.
- With appropriate forcing, generic instances do not "self-solve".
- Key features of ADC and D_2^2 :
 - Instances that do not "self-solve" have solutions of both types.
 - ► Restrictions of instances (Y \ R, R infinite) are instances; solutions to restrictions still solve the original problem.
 - ... and the interesting case of a Seetapun-style construction succeeds.

Proof structure

New uniform results: SADS \leq_W ADC, SADS \leq_W D₂², ...

Actual construction: augmented version of Seetapun and Slaman (originally used to separate ACA₀ from RT_2^2).

We look for ascending/descending "blobs" for Ψ : a finite F is an *ascending blob* if $(\exists x < y)[(x <_L y) \land (x, y \in \Psi^{L \oplus F})].$

If we find $F_0 < F_1 < F_2 < \dots$ (all ascending or all descending), we build a *Seetapun tree* of "threads" in $\omega^{<\omega}$:

 $\alpha \in T$ iff $\alpha(i) \in F_i$ and range $(\alpha \upharpoonright |\alpha| - 1)$ contains no blob.

Proof idea

New uniform results: SADS \leq_W ADC, SADS \leq_W D₂², ...

Three cases on each side (ascending/descending):

- (i) Infinite sequence of blobs, finite Seetapun tree
- (ii) Infinite sequence of blobs, infinite Seetapun tree
- (iii) No infinite sequence of blobs

Case (i) is usually the interesting case in a Seetapun construction; here, it's standard.

In cases (ii) and (iii): If case (i) fails (say for ascending), then there is a subset containing no ascending blobs...

End Matter

References

End Matter

Thank you!