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Density, Intrinsic Density, and ‘Usually Solvable’ Problems
The ‘Usually Solvable’ Phenomenon

Solvable Problems

What does it mean to solve a problem?

One can find its answer by some reliable, systematic method.
I General recursive functions (Gödel)
I Lambda calculus (Church)
I Turing machines (Turing)

All of these are abstract, not practical.

Our answer: Turing’s thesis.

A problem has a computable solution if we can give an algorithm
that, given any instance of our problem, will always stop and
output the correct answer.
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The ‘Usually Solvable’ Phenomenon

‘Usually Solvable’ Problems

I First: not all problems are solvable.
I Turing (1936): the halting problem for Turing machines.
I SAT (boolean satisfiability): solvable, but NP-complete
I Word problem for groups: equivalent to the halting problem.

I Except... we solve these problems all the time.
I SAT solvers: applied to hardware verification!
I Word problem: solvers used for proof automation, and in

industry for equivalence of representations.
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Density

Definition

Any set S ⊆ ω has upper density

ρ(S) = lim sup
n→∞

|S �n|
n

and lower density
ρ(S) = lim inf

n→∞
|S �n|

n .

If these coincide, S has (asymptotic) density

ρ(S) = lim
n→∞

|S �n|
n .
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Density

Virtues

I Content/pseudomeasure: like a measure, but finitely additive
I Actually, slightly better...

Theorem (Restricted countable additivity)
Let {Sj} be a countable sequence of pairwise-disjoint subsets of ω with
density. If limn→∞ ρ(

⋃∞
j=n Sj) = 0, then ρ(

⋃
Sj) =

∑
ρ(Sj).

[Jockusch and Schupp, 2012]
I Intuitive

I What fraction of ω is even? 1
2 .

I What fraction of ω is divisible by n? 1
n .

I What fraction of ω is prime? 0.
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Asymptotic Computability

Definitions

A problem is densely computable if there is an algorithm that halts
and gives the correct answer on a set of density 1.

A problem is coarsely computable if there is an algorithm that
always halts, and gives the correct answer on a set of density 1.

A problem is generically computable if there is an algorithm that
never gives a wrong answer, and halts on a set of density 1.

A problem is effectively densely computable if there is an algorithm
that always halts, gives the correct answer on a set of density 1,
and otherwise outputs “?”.
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Asymptotic Computability

Relations

edc

}} !!
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!!
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Theorem ([Jockusch and Schupp, 2012])
There is a set that is coarsely computable, but not generically computable.

Theorem ([Jockusch and Schupp, 2012])
There is a set that is generically computable, but not coarsely computable.
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The Vices of Asymptotic Density

Vices

I A density-0 set is “thin”, but usually not immune.
I Powers of 2, primes, etc.

Theorem (Density of computable sets
[Downey, Jockusch, and Schupp, 2013])
For any infinite co-infinite computable A and any (Σ0

2,Π0
2) pair

(a, b) with 0 ≤ a ≤ b ≤ 1, there is a computable permutation π
such that π(A) has lower density a and upper density b.

Corollary
If A is infinite and c.e., there is a computable permutation π such
that ρ(π(A)) = 1.
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2,Π0
2) pair

(a, b) with 0 ≤ a ≤ b ≤ 1, there is a computable permutation π
such that π(A) has lower density a and upper density b.

Corollary
If A is infinite and not bi-immune, there is a computable
permutation π such that π(A) is generically computable.
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Intrinsic Density

Definition

A set S ⊆ ω has intrinsic density ρ if it has density ρ under every
computable permutation of ω; that is, for every computable
permutation π,

ρ(π(S)) = ρ(S) = ρ.

We define intrinsic upper and lower density analogously.

More generally, a set S has absolute upper density

ρ(S) = sup
π
ρ(π(S))

and absolute lower density

ρ(S) = inf
π
ρ(π(S)).
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Intrinsic Density

ID1/2 and Randomness

Density 1
2 is the näıve Law of Large Numbers.

Too weak for randomness: the even numbers are not random, or
even stochastic.
However, intrinsic density 1

2 is meaningful.

A is permutation (injection) random if it defeats every computable
martingale selecting bits by a computable permutation (injection).

Theorem (Astor)
Permutation and injection stochasticity coincide, and are
equivalent to intrinsic density 1

2 .
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Intrinsic Density

ID0 and Immunity

Unlike density, intrinsic density 0 (ID0) is an immunity property.
(Even ILD0 is strictly between hyperimmunity and immunity.)
In practical terms: weaker than dense immune, but more standard.
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Intrinsic Density

ID0 and Immunity

The Classical Immunity Hierarchy

Cohesive

{{ ##
q-Cohesive

��

r-Cohesive

��

shh-Immune

��

// sh-Immune

��

hh-Immune

))

fsh-Immune

��

Dense Immune // Hyperimmune

��

Immune
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Intrinsic Density

ID0 and Immunity

Now with Intrinsic Density 0

Cohesive

zz $$
q-Cohesive

��

��

r-Cohesive

��

��

shh-Immune

��

// sh-Immune

��

hh-Immune

**

fsh-Immune

��

Dense Immune

$$

// Hyperimmune

��

ID0 // ILD0

��

Immune
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Intrinsic Density

ID0 and Immunity

New Results

Proposition (Jockusch)
Every r-cohesive set has intrinsic density 0.
Proof: cofinitely contained in one equivalence class mod n, for any n.

Proposition (Astor)
Every dense immune set has intrinsic density 0.
Proof: combinatorial exercise with limits.

Proposition (Astor)
Every 1-random computes an infinite non-hyperimmune set with
intrinsic density 0.
Proof: take the proof that 1-random sets are not hyperimmune, and use it to
guide a progressive intersection of countably many relatively 1-random sets.
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Intrinsic Density

ID0 and Immunity

New Results

Theorem (Astor)
For all ε > 0, there exists a ∆0

2 (s)hh-immune with upper density
at least 1− ε.

Sketch of Proof.
Direct finite-injury construction below ∅′; make sure we only avoid
“small” elements of each weak array, with small lower density.
The problem: ∅′ can’t even approximate lower density for c.e. sets.
Instead, use ∅′ to approximate upper density for many disjoint c.e.
sets at once, then use that to approximate when other disjoint c.e.
sets must have small density.
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Intrinsic Density

ID0 and Immunity

Note:
I Intrinsic density 0 is an immunity property.
I Intrinsic density 1

2 is a form of stochasticity.
(Same for any intrinsic density in (0, 1).)

I Intrinsic density connects immunity and stochasticity
Something we forget:
I Immune (“thin”): hard to hit repeatedly
I Simple (“thick”): hard to avoid contact
I Stochastic: hard to achieve any structured pattern of

intersection or non-intersection
Obviously related, and all about unpredictability.
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Application

Intrinsic Dense Computability

Candidate definitions:
I Weak: A is weakly i.d.c. iff π(A) is densely computable for

every computable permutation π.
I Uniform: A is uniform i.d.c. iff there is a uniform program

that, provided an index for a permutation φe = π, produces a
dense computation of π(A).

I Oracle uniform: A is oracle uniform i.d.c. iff there is a Turing
functional ΦX such that, for any computable permutation π,
Φπ is a dense computation of π(A).

I Strong: A is strongly i.d.c. iff there is a computable function f
such that f (n) ↓= A(n) on a set of intrinsic density 1.
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Application

Theorem (Astor)
There is a permutation π such that, for any index set S, π(S) is
densely computable iff S is computable. Thus, π(S) is not densely
computable for any non-trivial index set S.
Sketch: Use the Padding Lemma; enumerate equivalent programs for every
index and choose π to concentrate them.

Corollary
Regardless of one’s choice of definition of intrinsic dense
computability, the halting problem is not i.d.c.

19 / 22



Density, Intrinsic Density, and ‘Usually Solvable’ Problems
Application

Theorem (Astor)
There is a permutation π such that, for any index set S, π(S) is
densely computable iff S is computable. Thus, π(S) is not densely
computable for any non-trivial index set S.
Sketch: Use the Padding Lemma; enumerate equivalent programs for every
index and choose π to concentrate them.

Corollary
Regardless of one’s choice of definition of intrinsic dense
computability, the halting problem is not i.d.c.

19 / 22



Density, Intrinsic Density, and ‘Usually Solvable’ Problems

References

R. Downey, C. Jockusch, Jr., and P. Schupp, 2013.
Asymptotic density and computably enumerable sets
J. Math. Log. 13(2).

D. Hirschfeldt, C. Jockusch, Jr., R. Kuyper, and P. Schupp, 2015.
Coarse reducibility and algorithmic randomness
J. Symb. Log., to appear.

I. Kapovich, A. Myasnikov, P. Schupp, and V. Shpilrain, 2003.
Generic-case complexity, decision problems in group theory, and random walks
J. Algebra 264(2), 665–694.

B. Kjos-Hanssen, W. Merkle, and F. Stephan, 2011.
Kolmogorov complexity and the Recursion Theorem
Trans. Amer. Math. Soc. 363(10), 5465–5480.

C. Jockusch, Jr. and P. Schupp, 2012.
Generic computability, turing degrees, and asymptotic density
J. Lond. Math. Soc. 85(2), 472–490.

F. Stephan and Zhang J., preprint.
Weakly represented families in the context of reverse mathematics

20 / 22



Density, Intrinsic Density, and ‘Usually Solvable’ Problems

The End
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Appendix

Classical Immunity Properties

I immune – no c.e. subset
I dense immune – principal function dominates all computable functions

I array – uniform list of disjoint sets
I hyperimmune – avoids an element from each array of finite sets
I fsh-immune – avoids an element from each array of computable sets (all finite)
I sh-immune – avoids an element from each array of comp. sets (comp. union)
I hh-immune – avoids an element from each array of c.e. sets (all finite)
I shh-immune – avoids an element from each array of c.e. sets

I cohesive – infinite intersection with exactly one of A or A for all c.e. A
I r-cohesive – infinite intersection with exactly one of A or A for all computable A
I q-cohesive – finite union of cohesive sets
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