Divisions in the Reverse Math Zoo, and the weakness of typicality

Eric P. Astor

University of Connecticut

eric.astor@uconn.edu

October 10, 2017

Results joint with Bienvenu, Dzhafarov, Patey, Shafer, Solomon, and Westrick

Overview

Introducing the Zoo

Context The Software Back to the Big Picture

Divisions in the Reverse Math Zoo Specifics

Weakness of Typicality

Generalities Bounding Typicality-Existence Axioms

What Zoo?

The Big Five systems have been essential to reverse mathematics, and significantly coincide with philosophically important divisions in proof techniques.

- ► RCA₀: constructive/computable mathematics
- WKL₀: compactness arguments
- ACA₀: "most down-to-earth constructions", PA, and predicativism

Conveniently, they all sit in a linear order.

What Zoo?

The Big Five systems have been essential to reverse mathematics, and significantly coincide with philosophically important divisions in proof techniques.

- ► RCA₀: constructive/computable mathematics
- WKL₀: compactness arguments
- ACA₀: "most down-to-earth constructions", PA, and predicativism

Conveniently, they all sit in a linear order.

But... There are exceptional theorems.

Oh, THAT Zoo

There are a *lot* of exceptional theorems.

Before I go on: how did I make that diagram?

A Shameless Plug

Before I go on: how did I make that diagram?

The **RM Zoo**: http://rmzoo.math.uconn.edu

- Input: a bibliography, annotated with theorems proven.
- Output 1: all inferrable results (with justifications)
- Output 2: diagrams of the resulting Zoo, in adjustable detail

- 1. **The Zoo is useful.** Detailed citations, backed by a specialized inference engine for tracking knowledge.
- 2. **The Zoo works!** Detailed bibliography already assembled, producing authoritative results.

- 1. **The Zoo is useful.** Detailed citations, backed by a specialized inference engine for tracking knowledge.
- 2. **The Zoo works!** Detailed bibliography already assembled, producing authoritative results.
- 3. The Zoo needs help. Assembling the bibliography takes time, and requires *some* context. Contributions welcome!

└─ Introducing the Zoo

└─Back to the Big Picture

Making Sense out of Chaos — Hopefully

The Pattern So Far

So far, every atypical principle between ACA_0 and RCA_0 falls on one of four "branches":

- Ramsey theory (RT²₂, ADS, etc.)
- Genericity (Π⁰₁G [aka W2-GEN], FIP, etc.)
- Randomness (WWKL \equiv 1-RAN, DNR, etc.)
- Compactness (WKL₀)

Ramsey Theory (or Combinatorics)

Definition

 RT_2^2 : Every 2-coloring of edges on an infinite graph has a homogeneous induced subgraph.

Specifics

Ramsey Theory (or Combinatorics)

Definition

 RT_2^2 : Every 2-coloring of edges on an infinite graph has a homogeneous induced subgraph.

In an infinite party, either infinitely many guests all know each other, or infinitely many are mutual strangers.

L Specifics

Ramsey Theory (or Combinatorics)

Definition

 RT_2^2 : Every 2-coloring of edges on an infinite graph has a homogeneous induced subgraph.

In an infinite party, either infinitely many guests all know each other, or infinitely many are mutual strangers.

Theorem (Seetapun and Slaman (1995)) RCA₀ + RT₂² $\not\models$ ACA₀.

Theorem (Jockusch (1972) and Liu (2012)) RT_2^2 and WKL_0 are incomparable over RCA_0 .

L Specifics

Ramsey Theory (or Combinatorics)

Definition

 RT_2^2 : Every 2-coloring of edges on an infinite graph has a homogeneous induced subgraph.

In an infinite party, either infinitely many guests all know each other, or infinitely many are mutual strangers.

Theorem (Seetapun and Slaman (1995)) RCA₀ + RT₂² $\not\models$ ACA₀.

Theorem (Jockusch (1972) and Liu (2012)) RT_2^2 and WKL_0 are incomparable over RCA_0 .

Theorem (Jockusch (1972))

 RT_2^3 is equivalent to ACA_0 over RCA_0 .

Genericity

Definition

X is n-generic if it is Cohen-generic for n-quantifier arithmetic.

Theorem (Posner (1-generic) and Jockusch (n-generic)) X is n-generic iff it meets or avoids every Σ_n^0 collection of basic open sets.

Genericity

Definition

X is n-generic if it is Cohen-generic for n-quantifier arithmetic.

Theorem (Posner (1-generic) and Jockusch (n-generic)) X is n-generic iff it meets or avoids every Σ_n^0 collection of basic open sets.

Definition

X is weakly (n + 1)-generic if it meets all dense $\sum_{n=1}^{0}$ sets.

Genericity

Definition

X is n-generic if it is Cohen-generic for n-quantifier arithmetic.

Theorem (Posner (1-generic) and Jockusch (n-generic)) X is n-generic iff it meets or avoids every Σ_n^0 collection of basic open sets.

Definition

X is weakly (n + 1)-generic if it meets all dense $\prod_{n=1}^{0}$ sets.

Definition

- ▶ 1-GEN: For every X, there is a set 1-generic relative to X.
- Π_1^0 G: roughly, the same for weak 2-generics.

Theorem (Hirschfeldt, Shore, and Slaman) $\Pi_1^0 G$ is equivalent to AMT over $I\Sigma_2^0$.

Randomness

Definition

X is 1-random (Martin-Löf random) if it is captured by no effectively-describable set of measure 0.

Randomness

Definition

X is 1-random (Martin-Löf random) if it is captured by no effectively-describable set of measure 0.

Definition

We say *C* is an effectively-describable set of measure 0 if it is contained in $\cap_i C_i$, with $\mu(C_i) < 2^{-i}$ and the C_i 's uniformly Σ_1^0 .

Randomness

Definition

X is 1-random (Martin-Löf random) if it is captured by no effectively-describable set of measure 0.

Definition

We say C is an effectively-describable set of measure 0 if it is contained in $\cap_i C_i$, with $\mu(C_i) < 2^{-i}$ and the C_i 's uniformly Σ_1^0 .

- ▶ 1-RAN: For every X, there is a set 1-random relative to X.
- *n*-RAN: For every X, there is a set random relative to $X^{(n-1)}$.

Randomness

- ► WWKL: Every computable binary tree with positive density at every level has an infinite path. (≡ 1-RAN over RCA₀)
- *n*-WWKL: Every Ø^(n−1)-computable binary tree... (≡ *n*-RAN + BΣ⁰_n)

Theorem (Yu and Simpson (1990)) *n*-WWKL does not imply WKL.

Theorem (Avigad, Dean, and Rute (2012)) For n > 1, WKL does not imply n-WWKL.

Theorem (Conidis & Slaman, analyzing Csima & Mileti) 2-RAN *implies* RRT_2^2 *over* RCA_0 .

Definition RRT₂²: If $f : [\omega]^2 \to \omega$ has $|f^{-1}(c)| \le 2$ for all c, then $f \upharpoonright [R]^2$ is injective for some infinite R.

Typicality

Fix a notion of negligibility on 2^{ω} (a σ -ideal).

Definition

X is *typical* if it avoids all negligible classes with an effective description.

- *n*-random: measure 0, uniformly Σ_n^0 description
- weakly (n+1)-generic: meager, Σ_n^0 description

Typicality

Fix a notion of negligibility on 2^{ω} (a σ -ideal).

Definition

X is *typical* if it avoids all negligible classes with an effective description.

- *n*-random: measure 0, uniformly $\sum_{n=1}^{0} \sum_{n=1}^{\infty} \sum_{n=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{j=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=$
- weakly (n + 1)-generic: meager, Σ_n^0 description

A slight lie: technically, weakly *n*-generic avoids co-dense sets. Thus, *a priori*, weakly *n*-generics are more than typical for this.

Weakness of Typicality

Bounding Typicality-Existence Axioms

Typicality in Reverse Math

Existence of sufficiently typical sets has some power.

- 2-RAN implies RRT²₂...
- Π⁰₁G implies AMT...

But what are the limits?

Weakness of Typicality

Bounding Typicality-Existence Axioms

Typicality in Reverse Math

Existence of sufficiently typical sets has some power.

- 2-RAN implies RRT²₂...
- Π⁰₁G implies AMT...

But what are the limits?

How much changes if we have a random oracle?

The Weakness of Typicality Weakness of Typicality

Bounding Typicality-Existence Axioms

Assumptions

Fix a notion of negligibility in 2^{ω} . (σ -ideal)

Definition

X is typical if it avoids all effective negligible classes.

One more assumption:

Bounding Typicality-Existence Axioms

Assumptions

Fix a notion of negligibility in 2^{ω} . (σ -ideal)

Definition

X is typical if it avoids all effective negligible classes.

One more assumption:

If S is negligible, so is $\{X : X \oplus Z \in S \text{ for non-negligibly many } Z's\}.$

- ► True for measure 0: Fubini's theorem
- True for first category: weak direction of Kuratowski-Ulam

Weakness of Typicality

Bounding Typicality-Existence Axioms

Bounding Typicality

P and $Q \Pi_2^1$ principles:

$$(\forall I)[\Phi(I) \Rightarrow (\exists S)\Psi(I,S)]$$

Definition

P is *frequently solved* if every *P*-instance has *P*-solutions below non-negligibly many oracles.

A *Q*-instance *I* is *typically unsolved* if it has *Q*-solutions below negligibly many oracles.

Weakness of Typicality

Bounding Typicality-Existence Axioms

Bounding Typicality

P and $Q \Pi_2^1$ principles:

$$(\forall I)[\Phi(I) \Rightarrow (\exists S)\Psi(I,S)]$$

Definition

P is *frequently solved* if every *P*-instance has *P*-solutions below non-negligibly many oracles.

A *Q*-instance *I* is *typically unsolved* if it has *Q*-solutions below negligibly many oracles.

Theorem

If P is frequently solved and Q has a typically-unsolved instance, then there is an ω -model of RCA₀ + P + \neg Q.

Weakness of Typicality

Bounding Typicality-Existence Axioms

Consequences

n-RAN cannot imply:

- Π_1^0 G, or AMT (same ω -models)
- RRT³₂ (even though 2-RAN implies RRT²₂)
- SEM (stable Erdös-Moser: every stable tournament has a transitive subtournament)

In fact... it cannot imply most of the Zoo!

Similar consequences for *n*-GEN; more work to be done.

The Weakness of Typicality └─Weakness of Typicality

Bounding Typicality-Existence Axioms

Proof Idea

- We add solutions to P, while avoiding anything that makes solutions to the typically-unsolved instance I non-negligible.
- ► To do so, we add a solution X₁ not solving I... then a solution X₂ with X₁ ⊕ X₂ not solving I...
- Actually, we avoid the closure of solutions to *I* under the operator:

 $B(C) = \{X : X \oplus Z \in C \text{ for non-negligibly many } Z's\}.$

Still negligible, still closed upwards wrt *I*-computability.

-Weakness of Typicality

Bounding Typicality-Existence Axioms

Outside of Problem-Solution...

Hope: "frequently solved" means "true in a typical ω -model"... No such luck.

"true in a typical ω -model" means " $(\omega, I(X)) \models P$ for typical X", where I(X) is the Turing ideal generated by $\{X^{[i]}\}$.

Definition

If typical means measure 1, P does not have *the NRA property*. (The NRA property corresponds to "typically-unsolved instance".)

Weakness of Typicality

Bounding Typicality-Existence Axioms

The NRA Property

Definition

P does not have *NRA* if $(\omega, I(X)) \models P$ for almost all *X*.

If P is Π_2^1 (and typical means measure 1), equivalent to: Almost every X bounds only *P*-instances solved with measure 1.

Stricter than "computable instances are frequently solved", weaker than "all instances are frequently solved".

Theorem If P does not have NRA, but Q does, there is an ω -model of RCA₀ + P + \neg Q.

References I

References II

C. Jockusch, Jr., 1980.

Degrees of generic sets. in *Recursion Theory: its Generalisations and Applications.*

J. Liu, 2012.

 RT_2^2 does not imply WKL₀. The Journal of Symbolic Logic, 77(2).

D. Seetapun and T. Slaman, 1995. On the strength of Ramsey's Theorem. Notre Dame Journal of Formal Logic, 36(4).

X. Yu and S. Simpson, 1990. Measure theory and weak König's lemma. *Archive for Mathematical Logic*, 30(3).

Thank you!